• Title/Summary/Keyword: plasmonic structure

Search Result 39, Processing Time 0.027 seconds

Gold-sapphire Plasmonic Nanostructures for Coherent Extreme-ultraviolet Pulse Generation

  • Han, Seunghwoi
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.576-582
    • /
    • 2022
  • Plasmonic high-order harmonic generation (HHG) is used in nanoscale optical applications because it can help in realizing a compact coherent ultrashort pulse generator on the nanoscale, using plasmonic field enhancement. The plasmonic amplification of nanostructures induces nonlinear optical phenomena such as second-order harmonic generation, third-order harmonic generation, frequency mixing, and HHG. This amplification also causes damage to the structure itself. In this study, the plasmonic amplification according to the design of a metal-coated sapphire conical structure is theoretically calculated, and we analyze the effects of this optical amplification on HHG and damage to the sample.

Dependence of Q Factor on Surface Roughness in a Plasmonic Cavity

  • Kim, Yoon-Ho;Kwon, Soon-Hong;Ee, Ho-Seok;Hwang, Yongsop;No, You-Shin;Park, Hong-Gyu
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.188-191
    • /
    • 2016
  • We investigated surface-roughness-dependent optical loss in a plasmonic cavity consisting of a semiconductor nanodisk/silver nanopan structure. Numerical simulations show that the quality factors of plasmonic resonant modes significantly depend on the surface roughness of the dielectric-metal interface in the cavity structure. In the transverse-magnetic-like whispering-gallery plasmonic mode excited in a structure with disk diameter of 1000 nm, the total quality factor decreased from 260 to 130 with increasing root-mean-square (rms) surface roughness from 0 to 5 nm. This quantitative theoretical study shows that the smooth metal surface plays a critical role in high-performance plasmonic devices.

Optical Characteristics of Plamonic Waveguide Using Tapered Structure (테이퍼 구조를 이용한 플라즈모닉 도파로의 광학 특성)

  • Kim, Doo Gun;Kim, Hong-Seung;Oh, Geum-Yoon;Kim, Seon-Hoon;Ki, Hyun-Chul;Kim, Tae-Un;Kim, Hwe Jong;Ma, Ping;Hafner, Christian;Choi, Young-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.156-161
    • /
    • 2014
  • We have investigated the optical properties of plamonic waveguide with tapered structure based on InP material for photonic integrated circuit(PIC). The proposed plasmonic waveguide is covered with the Ag thin film to generate the plasmonic wave on metallic interface. The optical characteristics of plasmonic waveguide were calculated using the three-dimensional finite-difference time-domain method. The plasmonic waveguide was fabricated with the lengths of 2 to $10{\mu}m$ and the widths of 400 to 700 nm, respectively. The plasmonic mode and optical loss were measured. The optimum plasmonic length is $10{\mu}m$ and widths are 600 and 700 nm in the fabricated waveguide. This plasmonic waveguide can be directly integrated with other conventional optical devices and can be essential building blocks of PIC.

A Study on Optical Characteristic of Plasmonic Nanostructure Depending on Height of Deposited Silver (플라즈모닉 구조를 위한 은 증착 두께에 따른 광 특성 해석 연구)

  • Kim, J.H.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.55-58
    • /
    • 2019
  • Surface plasmon effect was considered importantly because of the enhancement of optical signals. It is important to detect weak optical signal in neuroscience and bio technology due to detect weaker image or signal. The height of silver can change the optical characteristic of plasmonic nano structure including transmittance and reflectance. In this paper, the optical characteristic of plasmonic nano structure were confirmed by the FDTD analysis method depending on the silver height and it was confirmed that energy was concentrated at the center of nano structure, and high far-field gain and current density in particular wavelength coule be obtained.

Design of Plasmonic Slot Waveguide with High Localization and Long Propagation Length

  • Lee, Ki-Sik;Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.305-309
    • /
    • 2011
  • We present an efficient design approach for a plasmonic slot waveguide using a genetic algorithm. The analyzed structure consists of a nanometric slot in a thin metallic film embedded within a dielectric. To achieve high confinement without long propagation length, the thickness and width of the slot are optimally designed in order to optimize the figures of merit including mode confinement and propagation length. The optimized design is based on the finite element method and enhances the guiding and focusing of light power propagation.

POINTWISE BEHAVIOR OF THE POTENTIAL IN ANOMALOUS LOCALIZED RESONANCE: A NUMERICAL STUDY

  • Eom, Junyong
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.171-180
    • /
    • 2015
  • It is discovered in [7] that a dielectric material is coated by a plasmonic material of negative permittivity with dissipation, then cloaking by anomalous localized resonance may occur as the dissipation tends to zero. In this paper, we investigate numerically the pointwise behavior of the potential in the shell when cloaking by anomalous localized resonance (CALR) occurs. By changing locations a dipole source, we can observe some localizing properties of the potential in the shell.

Modal Characteristics of Plasmonic Multimode Interference Couplers with Stepped Structure (플라즈마 계단형 다중모드 간섭 결합기의 모드 특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.47-52
    • /
    • 2013
  • A novel architecture to reduce dramatically the coupling length of multimode interference-based couplers (MMICs) is proposed by replacing conventionally designed MMICs by cascaded two-section plasmonic stepped MMICs (PS-MMIC). For the 60% cross power splitting ratio in a stepped-width MMIC, the coupling length of device results in around 42% length reduction. Furthermore, the power splitting ratio and coupling length of plasmonic MMIC just vary around 1~2% along the variation of refractive index. On the contrast, those factors for the variation of MMIC's width strongly vary around 30~40%.

Sub-Micrometer-Sized Spectrometer by Using Plasmonic Tapered Channel-Waveguide

  • Lee, Da Eun;Lee, Tae-Woo;Kwon, Soon-Hong
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.788-792
    • /
    • 2014
  • It has been a critical issue to reduce the size of spectrometers in many fields such as on-chip chemical and biological sensing. The proposed plasmonic channel-waveguide with a sub-micrometer width has a cutoff frequency which enables us to control wavelength dependent propagation properties. We focused on the capability of the waveguide for spectral-to-spatial mapping when the waveguide width changes gradually. In this paper, we propose a plasmonic tapered channel-waveguide structure as a compact spectrometer with a physical size of $0.24{\times}2.0{\times}0.20{\mu}m^3$. The scattering point just above the tapered waveguide moves linearly depending on the wavelength of the injecting light. The spectral-to-spatial mapping can be improved by increasing the tapered length.

Implementation of Polarization Beam-Splitter based on DFB-Assisted Plasmonic Multimode Interference Coupler (DFB 구조형 플라즈마 다중모드 간섭 결합기를 사용한 편향기의 구현)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.143-148
    • /
    • 2013
  • A novel ultracompact polarization beam-splitter (PBS) combining two plasmonic multimode interference couplers (P-MMICs) and DFB guiding structure is implemented. The $2{\times}1$ and $1{\times}2$ P-MMICs are designed to collect the polarized powers of TE and TM modes reflected by or transmitted through an internal DFB structure. The simulation results show that the designed DFB-assisted PBS is very short (about $75{\mu}m$), and has a low insertion loss, a high extinction ratio, and a broad bandwidth of 20 nm.

Ultrahuge Light Intensity in the Gap Region of a Bowtie Nanoantenna Coupled to a Low-mode-volume Photonic-crystal Nanocavity

  • Ebadi, Nassibeh;Yadipour, Reza;Baghban, Hamed
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.85-89
    • /
    • 2018
  • This paper presents a new, efficient hybrid photonic-plasmonic structure. The proposed structure efficiently and with very high accuracy combines the resonant mode of a low-mode-volume photonic-crystal nanocavity with a bowtie nanoantenna's plasmonic resonance. The resulting enormous enhancement of light intensity of about $1.1{\times}10^7$ in the gap region of the bowtie nanoantenna, due to the effective optical-resonance combination, is realized by subtle optimization of the nanocavity's optical characteristics. This coupled structure holds great promise for many applications relying on strong confinement and enhancement of optical field in nanoscale volumes, including antennas (communication and information), optical trapping and manipulation, sensors, data storage, nonlinear optics, and lasers.