• Title/Summary/Keyword: plastic deformation capacity

Search Result 180, Processing Time 0.027 seconds

Plastic Deformation Capacity of Steel Beam-to-Column Connection under Long-duration Earthquake

  • Yamada, Satoshi;Jiao, Yu;Narihara, Hiroyuki;Yasuda, Satoshi;Hasegawa, Takashi
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.231-241
    • /
    • 2014
  • Ductile fracture is one of the most common failure modes of steel beam-to-column connections in moment resisting frames. Most proposed evaluation methods of the plastic deformation capacity of a beam until ductile fracture are based on steel beam tests, where the material's yield strength/ratio, the beam's moment gradient, and loading history are the most important parameters. It is impossible and unpractical to cover all these parameters in real tests. Therefore, a new attempt to evaluate a beam's plastic deformation capacity through analysis is introduced in this paper. Another important issue is about the loading histories. Recent years, the effect on the structural component under long-duration ground motion has drawn great attentions. Steel beams tends to experience a large number of loading cycles with small amplitudes during long-duration earthquakes. However, current research often focuses on the beam's behavior under standard incremental loading protocols recommended by respective countries. In this paper, the plastic deformation capacity of steel beams subjected to long duration ground motions was evaluated through analytical methodology.

Analysis on the Load Carrying Capacity of Steel Bridges Considering Initial Stress (강교의 초기응력을 고려한 내하력 해석)

  • Chang, Kyong-Ho;Kang, Jae-Hoon;Jang, Gab-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.129-136
    • /
    • 2004
  • Almost the steel bridges are manufactured and constructed by using weld process. The welding is necessary for connecting the flange, web and stiffener of steel bridges. However, residual stress and welding deformation producted by welding is a causes of decreasing the load carrying capacity of steel bridges. therefore, it is need to consider the initial stresses by welding when design the steel bridge. However, the influence of initial stress producted by welding on load carrying capacity of steel bridges is not elucidated. In this paper, the initial stress state on the flange, web and stiffener of steel bridges are clarified by carrying out 3-dimensional non-steady heat conduction analysis and 3-dimensional thermal elastic-plastic analysis. The influence of initial stress by welding on load carrying capacity of steel bridges is clarified by carrying out 3-dimensional elastic-plastic finite element analysis using finite deformation theory.

  • PDF

A Perfomance Evaluation of the Deformation-Compatible Vertical Drain (DCVD 배수재의 성능평가)

  • Song, Seok-Kyu;Chun, Youn-Chul;Shim, Jai-Beom;Shim, Seong-Hyeon;Kim, Young-Uk;Lee, Seok-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.692-701
    • /
    • 2009
  • The use of vertical drain method to improve the soft soil ground has been continuously increased in Korea such as Busan New Port, Saemangeum reclamation project and so on in Korea. Especially PBD(Plastic Board Drain), one of the vertical drain, has been widely used due to the economic feasibility, construction compatibility and quality control. However in case of using PBD, discharge capacity reduction caused by creep deformation of the PBD filter, bending, kinking and so on can be occurred. Therefore the purpose of this study is to solve these problems by developing Deformation-Compatible Vertical Drain, DCVD which allows to deform with consolidation settlement without bending and kinking of vertical drain. In order to investigate the performance of DCVD developed in this study, discharge capacity test, centrifuge model test and complex discharge capacity test for both PBD and DCVD are performed and the results are compared.

  • PDF

Bond and ductility: a theoretical study on the impact of construction details - part 1: basic considerations

  • Zwicky, Daia
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.103-119
    • /
    • 2013
  • The applicability of limit analysis methods in design and assessment of concrete structures generally requires a certain plastic deformation capacity. The latter is primarily provided by the ductility of the reinforcement, being additionally affected by the bond properties between reinforcing steel and concrete since they provoke strain localization in the reinforcement at cracks. The bond strength of reinforcing bars is not only governed by concrete quality, but also by construction details such as bar ribbing, bar spacing or concrete cover thickness. For new concrete structures, a potentially unfavorable impact on bond strength can easily be anticipated through appropriate code rules on construction details. In existing structures, these requirements may not be necessarily satisfied, consequently requiring additional considerations. This two-part paper investigates in a theoretical study the impacts of the most frequently encountered construction details which may not satisfy design code requirements on bond strength, steel strain localization and plastic deformation capacity of cracked structural concrete. The first part introduces basic considerations on bond, strain localization and plastic deformation capacity as well as the fundamentals of the Tension Chord Model underlying the further investigations. It also analyzes the impacts of the hardening behavior of reinforcing steel and concrete quality. The second part discusses the impacts of construction details (bar ribbing, bar spacing, and concrete cover thickness) and of additional structure-specific features such as bar diameter and crack spacing.

Experimental performance of Y-shaped eccentrically braced frames fabricated with high strength steel

  • Lian, Ming;Su, Mingzhou;Guo, Yan
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.441-453
    • /
    • 2017
  • In Y-shaped eccentrically braced frame fabricated with high strength steel (Y-HSS-EBF), link uses conventional steel while other structural members use high strength steel. Cyclic test for a 1:2 length scaled one-bay and one-story Y-HSS-EBF specimen and shake table test for a 1:2 length scaled three-story Y-HSS-EBF specimen were carried out to research the seismic performance of Y-HSS-EBF. These include the failure mode, load-bearing capacity, ductility, energy dissipation capacity, dynamic properties, acceleration responses, displacement responses, and dynamic strain responses. The test results indicated that the one-bay and one-story Y-HSS-EBF specimen had good load-bearing capacity and ductility capacity. The three-story specimen cumulative structural damage and deformation increased, while its stiffness decreased. There was no plastic deformation observed in the braces, beams, or columns in the three-story Y-HSS-EBF specimen, and there was no danger of collapse during the seismic loads. The designed shear link dissipated the energy via shear deformation during the seismic loads. When the specimen was fractured, the maximum link plastic rotation angle was higher than 0.08 rad for the shear link in AISC341-10. The Y-HSS-EBF is a safe dual system with reliable hysteretic behaviors and seismic performance.

A Deformation Prediction of the Embankment on the Soft Clayey Foundation - A Case Study of the Sea Dike of Koheung Bay - (점성토지반에 축조한 제방의 변형추정 -고흥만 방수제 사례연구를 중심으로-)

  • 오재화;이문수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.94-102
    • /
    • 1998
  • This paper aims at developing the prediction technique of the deformation for the embankment such as sea dike and shore protection relevant to reclamation project along the southern coast of the Korean Peninsula. Generally total deformation of a sea dike over clayey foundation are composed of immediate settlement, plastic deformation and consolidation settlement. Plastic deformation occurs when the ultimate bearing capacity is less than overburden pressure containing the stress increment due to the construction of an embankment. The reliable prediction of total settlement is very important since deformed final geometry of sea dike is directly connected for analysing the safety of the long-term slope failure and piping. During this study, plastic deformation, major part of deformation was analysed using the program developed by authors, whereas immediate settlement and consolidation settlement were predicted by Mochinaka and Sena's method and Terzaghi's 1-dimensional theory of consolidation respectively. In order to validate the prediction technique for the deformation, a case study of Koheung Bay reclamation works was carried out. A good agreement was obtained between observation and prediction, which means the applicability of the technique.

  • PDF

Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression

  • Wang, Jian-Tao;Wang, Fa-Cheng
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.617-635
    • /
    • 2021
  • This paper numerically investigated the behavior of built-up square concrete-filled steel tubular (CFST) columns under combined preload and axial compression. The finite element (FE) models of target columns were verified in terms of failure mode, axial load-deformation curve and ultimate strength. A full-range analysis on the axial load-deformation response as well as the interaction behavior was conducted to reveal the composite mechanism. The parametric study was performed to investigate the influences of material strengths and geometric sizes. Subsequently, influence of construction preload on the full-range behavior and confinement effect was investigated. Numerical results indicate that the axial load-deformation curve can be divided into four working stages where the contact pressure of curling rib arc gradually disappears as the steel tube buckles; increasing width-to-thickness (B/t) ratio can enhance the strength enhancement index (e.g., an increment of 1.88% from B/t=40 to B/t=100), though ultimate strength and ductility are decreased; stiffener length and lip inclination angle display a slight influence on strength enhancement index and ductility; construction preload can degrade the plastic deformation capacity and postpone the origin appearance of contact pressure, thus making a decrease of 14.81%~27.23% in ductility. Finally, a revised equation for determining strain εscy corresponding to ultimate strength was proposed to evaluate the plastic deformation capacity of built-up square CFST columns.

An Experimental Study on the Elasto-Plastic Behavior of High Strength Column to Beam Welded Connection (고강도강 기둥(SM570) 보 용접접합부의 탄소성거동에 관한 실험적 연구 -스캘럽상세와 패널강성을 중심으로-)

  • Kim, Jong Rak;Kim, Sung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.487-494
    • /
    • 2000
  • This paper intends to propose design information with the result or comparing the deformation capacity with different panel stiffness specimens and estimating the plastic deformation capacity, toughness and strength of welded joint connection according to the different scallop types. The test results of the beam to column unit structure are as follow: the non-scalloped and the low stiffness panel specimen have more desirable result values than the scalloped and the high stiffness one in plastic deformation. Comparing the scallop types shows very unlikely tendency as follows, second cracking occurs at the very edge of scallop in the scalloped specimen otherwise cracking occurs bond area of welded beam flange in the non-scalloped one.

  • PDF

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.

Some practical considerations in designing underground station structures for seismic loads

  • Gu, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.491-500
    • /
    • 2015
  • Under seismic loading, underground station structures behave differently from above ground structures. Underground structures do not require designated energy dissipation system for seismic loads. These structures are traditionally designed with shear or racking deformation capacity to accommodate the movement of the soil caused by shear waves. The free-field shear deformation method may not be suitable for the design of shallowly buried station structures with complex structural configurations. Alternatively, a station structure can develop rocking mechanisms either as a whole rigid body or as a portion of the structure with plastic hinges. With a rocking mechanism, station structures can be tilted to accommodate lateral shear deformation from the soil. If required, plastic hinges can be implemented to develop rocking mechanism. Generally, rocking structures do not expect significant seismic loads from surrounding soils, although the mechanism may result in significant internal forces and localized soil bearing pressures. This method may produce a reliable and robust design of station structures.