• Title/Summary/Keyword: platooning

Search Result 43, Processing Time 0.034 seconds

Analysis of the Effects of the Truck Platooning Using a Meta-analysis (메타분석을 이용한 화물차 군집주행의 효과 분석)

  • Kim, Yejin;Jeong, Harim;Ko, Woori;Park, Joong-gyu;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.76-90
    • /
    • 2022
  • The platooning refers to a form in which one or more following vehicles along the path of the leading vehicle(directly driven by the driver) drive in one platoon using V2V, V2I communication and vehicle-mounted sensor. Platooning has emerged in line with the increasing demand for cargo volume and advanced transportation logistics systems, and is expected to have effects such as increasing capacity, reducing labor costs, and reducing fuel consumption. However, compared to general passenger cars, research on autonomous driving of trucks and verification of their effects are insufficient. Therefore, in this study, meta-analysis was conducted on the theme of the effect of truck platooning, and the results of existing studies related to platooning effects were integrated into one reliable, generalized, and objective summary estimate. In conclusion, it was analyzed that the introduction of truck platooning would have an effect of 13.93% increase in capacity, 38.76% decrease in conflict, and 8.13% decrease in fuel consumption.

Methodology for Determining Promising Freeway Segments for Truck Platooning (고속도로 화물차 군집주행 적용구간 선정 연구)

  • JO, Young;KWON, Kyeongjoo;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.98-111
    • /
    • 2018
  • Truck platooning, which is a cluster of trucks in support of vehicle-to-vehicle communication and automated longitudinal vehicle control, is a promising method to both operational efficiency and prevent traffic crashes. Although a variety of studies have been conducted to identify the effects of vehicle platooning on traffic stream, we are not aware of any study attempting to identify promising road segments for vehicle platooning. This study aims to develop a methodology for determining the priority of freeway segments that would potentially lead to maximize the effectiveness of truck platooning. Evaluation measures derived in this study includes truck crash rates, the percentage of truck traffic, segment length, and the number of entry and exit points. Weighting values obtained from an analytical hierarchical process (AHP) method were applied to compute the proposed priority score to determine better freeway segment for truck platooning. Results suggested that a 46.9km freeway segment, from Sacheon IC to Sanin JC, was the most promising segment for maximizing the effectiveness of truck platooning. It is expected that the outcome of this study would be effectively used as a fundamental to establish operational strategies for truck platooning.

Vehicle Platooning via Sensor Fusion of GPS Carrier Phase and Millimeter-Wave Radar

  • Woo, Myung-Jin;Park, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.5-23
    • /
    • 2001
  • This paper is concerned with the vehicle platooning in the AHS (Automated Highway Systems). For this, a relative navigation system is developed for the vehicles operating as a platoon. The relative navigation system is based on two sensors including GPS and MMWR (Millimeter-Wave Radar) and the federated Kalman Iter processing measurements of them. The architecture of this system requires GPS measurements of a preceding vehicle via communication link. Even if GPS measurements are available, they contain errors which are unacceptably high in vehicle platooning. Therefore, GPS carrier phase is considered. Integer ambiguities of GPS carrier phase measurements are determined by using MMWR ...

  • PDF

Dynamic grouping scheme for platooning in automated connected vehicle systems (커넥티드 기반 자율주행차 환경에서 동적 군집그룹 제어 방안)

  • Chung, Young-uk
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1099-1103
    • /
    • 2018
  • Platooning of vehicles is an efficient traffic management model that improves traffic flow and fuel consumption. Especially, it is necessary to reduce computational load and networking overhead in automated connected vehicle systems. Because it is important to maintain the size of the platoon group appropriately for efficient platoon operation, this study proposed a dynamic grouping scheme for platooning in an automated vehicle system. The proposed scheme is analyzed by a mathematical model based on Markov chain. From the performance evaluation, it was confirmed that the proposed scheme appropriately controls the size of the platoon group.

WAVE System Performance for Platooning Vehicle Service Requirements Under Highway Environments (고속도로 환경에서 군집주행 서비스 요구사항에 대한 WAVE 통신시스템 성능 분석)

  • Song, Yoo-seung;Choi, Hyun Kyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.147-156
    • /
    • 2017
  • This paper analyzes the performance limit of WAVE system for the platooning service requirements which is referred from the de facto standards. The performance of the packet error rate and mean delay as key parameters in the wireless communication systems should be satisfied to provide safety to the platooning vehicles. The test scenarios are conducted by considering the following vehicle groups: platooning vehicles, vehicles within a hop distance and vehicles within two hop distance( called hidden node vehicles). The models of packet error rate and delay deals with the topology of aforementioned vehicle groups, vehicle speed and communication range. The numerical results are obtained in terms of packet size, packet arrival rate and data transmission rate. Finally, this paper suggests the robust range of packet error rate and delay for the WAVE system to provide the platooning vehicle service.

A Study on the Determining Appropriate Truck and Commodity Types for V2X-based Truck Platooning (V2X 기반 군집주행을 위한 적정 화물차 및 품목 선정 기초연구)

  • Ryu, Seungkyu;Choi, Yoon-Hyuk;Jeong, Harim;Kwon, Bongkyung;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.122-134
    • /
    • 2020
  • To improve traffic congestion, reduce fuel consumption, and improve the stability of truck operations, truck platooning, in which several trucks are organized in a single platoon, is being actively researched globally. Compared to the operation of a single truck, the operation of a truck platoon requires more caution before the actual operation because an accident of one vehicle in the platoon can lead to an accident with all the vehicles in the platoon. Therefore, this study examined the types of trucks and cargo suitable for truck platooning to prevent safety accidents. The review showed that a closed-van-type truck is appropriate for truck platooning to prevent falling objects during driving. In the case of cargo types, it is necessary to exclude liquids and dangerous goods defined in related laws from truck platooning.

A Study on the Analysis of Bridge Safety by Truck Platooning (차량 군집 주행에 따른 교량 안전성 분석에 관한 연구 )

  • Sangwon Park;Minwoo Chang;Dukgeun Yun;Minhyung No
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.50-57
    • /
    • 2023
  • Autonomous driving technologies have been gradually improved for road traffic owing to the development of artificial intelligence. Since the truck platooning is beneficial in terms of the associated transporting expenses, the Connected-Automated Vehicle technology is rapidly evolving. The structural performance is, however, rarely investigated to capture the effect of truck platooning on civil infrastructures.In this study, the dynamic behavior of bridges under truck platooning was investigated, and the amplification factor of responses was estimated considering several parameters associated with the driving conditions. Artificial intelligence techniques were used to estimate the maximum response of the mid span of a bridge as the platooning vehicles passing, and the importance of the parameters was evaluated. The most suitable algorithm was selected by evaluating the consistency of the estimated displacement.

Analysis of Truck Platooning Operation Conditions Affecting Traffic Flow (교통류에 영향을 주는 화물차 군집주행 운영 조건 분석)

  • Jung, Harim;Lee, Young-taek;Park, Sangmin;Cho, Hyunbae;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.106-117
    • /
    • 2021
  • In Korea, interest in truck platooning is increasing because most cargo transportation is done by road. Truck platooning is the operation of two or more trucks in a row to form one platoon, which can increase road capacity and improve fuel efficiency. In this study, to analyze the effect of truck platooning on traffic flow, scenarios were created according to traffic conditions and truck platooning operating conditions. In order to understand the effect of the truck platooning operating conditions, correlation analysis was conducted with the average travel speed, the number of lane change disturbance, and the number of disturbance in the entry/exit section. As a result, the number of trucks in the platoon, the spacing of trucks in the platoon, and the spacing between platoons were found to have an effect on the average speed and the number of lane change disturbance In addition, the truck platooning ratio was found to have a strong correlation with the average travel speed and the number of lane change disturbance regardless of the LOS.

Fault-Tolerant Controller Design for Vehicles Platooning

  • Yoon, Gyeong-Hwan;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1853-1856
    • /
    • 2003
  • This paper considers the problem of longitudinal control of a platoon of automotive vehicles on a straight lane of a highway and proposes control laws in the event of loss of communication between the lead vehicle and the other vehicles in the platoon. Since safety plays a key role in the development of an Automated Highway System, fault-tolerant control is vital. In this paper, we develop a control algorithm in vehicle platooning and prove that this control algorithm is stable for certain class of faults such as parameter uncertainties. The performance of the controller is demonstrated through a series of simulations incorporating various vehicles and AHS faults. Results of simulation shows that the vehicles have good performance in spite of simple automotive and AHS failure, such as actuator failure,that is to say, engine input failure, communication failure between lead vehicle and the another vehicles.

  • PDF

A V2V Transmission Scheme for Safety Message Dissemination in Platooning (군집주행 차량의 안전 메시지 전달을 위한 V2V 전송 기법)

  • Ahn, Woojin;Hong, Hanseul;Kim, Ronny Yongho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.548-553
    • /
    • 2019
  • Along with advanced vehicle to vehicle (V2V) communication technologies, platooning is regarded as one of the most promising form of autonomous driving solutions in order to increase road capacity. In this paper, we propose a novel V2V transmission scheme for safety message dissemination in platooning. The proposed scheme enhances the efficiency of channel access and multi-vehicle orthogonal frequency division multiple access (OFDMA) transmission by taking advantage of triggered uplink access technique and null data packet feedback report protocol introduced in the sixth generation WLAN standard, IEEE 802.11ax. The simulation results prove that the proposed scheme outperforms the conventional IEEE 802.11 transmission scheme throughout all measured vehicle density range.