• Title/Summary/Keyword: plus-point probe

Search Result 3, Processing Time 0.019 seconds

Eddy Current Testing of Weldment by Plus(+) Point Probe (Plus(+) Point Probe를 이용한 용접부 와전류검사)

  • Lee, Hee-Jong;Kim, Yong-Sik;Nam, Mim-Woo;Yoon, Byung-Sik;Kim, Seok-Kon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.6
    • /
    • pp.426-432
    • /
    • 1999
  • A plus-point eddy current test(ECT) probe was developed to examine the defects on the welds of pumps, valves, and pipings which are the major components of the electric power plants, non-destructive evaluation (NDE) techniques for detecting and sizing the flaws were studied adapting this probe. Differential plus-point ECT probe is consists of two "I"-type coils crossed each other and has an advantage having a small influence on the sensitivity by lift-off variation to the conventional types of probe. The specimens with crack-like electro discharge machining(EDM) notches on the weld of type 304 stainless-steel were fabricated in order to evaluate the plus-point ECT probe response to the flaws. NDE techniques to detect and size the flaws and estimate the flaw type were established with this specimens.

  • PDF

Improvement of Electrodeposition Rate of Cu Layer by Heat Treatment of Electroless Cu Seed Layer (Cu Seed Layer의 열처리에 따른 전해동도금 전착속도 개선)

  • Kwon, Byungkoog;Shin, Dong-Myeong;Kim, Hyung Kook;Hwang, Yoon-Hwae
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.186-193
    • /
    • 2014
  • A thin Cu seed layer for electroplating has been employed for decades in the miniaturization and integration of printed circuit board (PCB), however many problems are still caused by the thin Cu seed layer, e.g., open circuit faults in PCB, dimple defects, low conductivity, and etc. Here, we studied the effect of heat treatment of the thin Cu seed layer on the deposition rate of electroplated Cu. We investigated the heat-treatment effect on the crystallite size, morphology, electrical properties, and electrodeposition thickness by X-ray diffraction (XRD), atomic force microscope (AFM), four point probe (FPP), and scanning electron microscope (SEM) measurements, respectively. The results showed that post heat treatment of the thin Cu seed layer could improve surface roughness as well as electrical conductivity. Moreover, the deposition rate of electroplated Cu was improved about 148% by heat treatment of the Cu seed layer, indicating that the enhanced electrical conductivity and surface roughness accelerated the formation of Cu nuclei during electroplating. We also confirmed that the electrodeposition rate in the via filling process was also accelerated by heat-treating the Cu seed layer.

A STUDY ON SURFACE ROUGHNESS OF COMPOSITE RESINS AFTER FINISHING AND POLISHING -an Atomic Force Microscope study (연마방법에 따른 복합레진의 활택도에 관한 연군 -Atomic Force Microscope를 이용한 연구)

  • Kim, Hyeong-Seob;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.719-741
    • /
    • 1997
  • This study was undertaken to compare by Atomic Force Microscope the effects of various finishing and polishing instruments on surface roughness of filling and veneering composite resins. Seven composite resins were studied : Silux Plus (3M Dental Products, U.S.A.), Charisma (Heraeus Kulzer, Germany), Prisma THP (L.D.Caulk, Dentsply, U.S.A.), Photoclearfil (Kuraray, Japan), Cesead (Kuraray, Japan), Thermoresin LC (GC, Japan), Artglass (Heraeus Kulzer, Germany). Samples were placed and polymerized in holes (2mm thick and 8.5mm in diameter) machined in Teflon mold under glass plate, ensuring excess of material and moulded to shape with polyester matrix strip. Except control group (Polyester matrix strip), all experimental groups were finished and polishied under manufacturer's instructions. The finishing and polishing procedure were : carbide bur (E.T carbide set 4159, Komet, Germany), diamond bur (composite resin polishing bur set, GC, Japan), aluminum-oxide disc (Sof-Lex Pop-On, 3M Dental Products, U.S.A.), diamond-particle disc (Dia-Finish, Renfert Germany), white stone bur & rubber point( composite finishing kit, EDENTA, Swiss), respectively. Each specimens were evaluated for the surface roughness with Atomic Force Microscope (AutoProbe CP, Park Scientific Instruments, U.S.A.) under contact mode and constant height mode. The results as follows : 1. Except Thermoresin LC, all experimental composite resin groups showed more rougher than control group after finishing and polishing(p<0.1). 2. A surface as smooth as control group was obtained by $Al_{2}O_{3}$ disc all filling composite resin groups except Charisma and all veneering composite resin groups except Thermoresin LC(p<0.05). 3. In case of Thermoresin LC, there were no statistically significant differences before and after finishing and polishing(p>0.1). 4. Carbide bur, diamond bur showed rough surfaces in all composite resin groups, so these were inappropriate for the final polishing instruments.

  • PDF