• Title/Summary/Keyword: point matching procedure

Search Result 38, Processing Time 0.023 seconds

A Study on the Extraction of the Minutiae and Singular Point for Fingerprint Matching

  • Na Ho-Jun;Kim Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.6
    • /
    • pp.761-767
    • /
    • 2005
  • The personal identification procedure through the fingerprints is divided as the classification process by the type of the fingerprints and the matching process to confirm oneself. Many existing researches for the classification and the matching of the fingerprint depend on the number of the minutiae of the fingerprints and the flow patterns by their direction information. In this paper, we focus on extracting the singular points by using the flow patterns of the direction information from identification. The extracted singular points are utilized as a standard point for the matching process by connecting with the extracted information from the singular point embodied. The orthogonal coordinates which is generated by the axises of the standard point can increase the accuracy of the fingerprints matching because of minimizing the effects on the location changes of the fingerprint images.

  • PDF

Pose Tracking of Moving Sensor using Monocular Camera and IMU Sensor

  • Jung, Sukwoo;Park, Seho;Lee, KyungTaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.3011-3024
    • /
    • 2021
  • Pose estimation of the sensor is important issue in many applications such as robotics, navigation, tracking, and Augmented Reality. This paper proposes visual-inertial integration system appropriate for dynamically moving condition of the sensor. The orientation estimated from Inertial Measurement Unit (IMU) sensor is used to calculate the essential matrix based on the intrinsic parameters of the camera. Using the epipolar geometry, the outliers of the feature point matching are eliminated in the image sequences. The pose of the sensor can be obtained from the feature point matching. The use of IMU sensor can help initially eliminate erroneous point matches in the image of dynamic scene. After the outliers are removed from the feature points, these selected feature points matching relations are used to calculate the precise fundamental matrix. Finally, with the feature point matching relation, the pose of the sensor is estimated. The proposed procedure was implemented and tested, comparing with the existing methods. Experimental results have shown the effectiveness of the technique proposed in this paper.

RFM-based Image Matching for Digital Elevation Model (다항식비례모형-영상정합 기법을 활용한 수치고도모형 제작)

  • 손홍규;박정환;최종현;박효근
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.209-214
    • /
    • 2004
  • This paper presents a RFM-based image matching algorithm which put constraints on the search space through the object-space approach. Also, the detail procedure of generating 3-D surface models from the RFM is introduced as an end-user point of view. The proposed algorithm provides the PML (Piecewise Matching Line) for image matching and reduces the search space to within the confined line-shape area.

  • PDF

A method on Digital Elevation Model Extraction Using Satellite Images

  • Ye, Soo-Chul;Jeon, Min-Byung;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.342-348
    • /
    • 1998
  • The purpose of this paper is to extract fast DEM (Digital Elevation Model) using satellite images. DEM extraction consists of three parts. First part is the modeling of satellite position and attitude, second part is the matching of two images to find corresponding poults of them and third part is to calculate the elevation of each point by using the result of the first and second part. The position and attitude modeling of satellite is processed by using GCPs. A area based matching method is used to find corresponding points between the stereo satellite images. In the DEM generation system, this procedure holds most of a processing time, therefore a new fast matching algorithm is proposed to reduce the time for matching. The elevation of each point is calculated using the exterior orientation obtained from modeling and disparity from matching. In this paper, the SPOT satellite images, level IA 6000 $\times$6000 panchromatic images are used to extract DEM. The experiment result shows the possibility of fast DEM. extraction with the satellite images.

  • PDF

Robust model matching design using normalized left coprime factorization approach

  • Hanajima, Naohiko;Eisaka, Toshio;Yanagita, Yoshiho;Tsuchiya, Takeshi;Tagawa, Ryozaburo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.360-365
    • /
    • 1993
  • In this paper, we propose a new design procedure of the Robust Model Matching(RM) using the Normalized Left Coprime Factorization (NLCF) approach. The RMM aims at reducing the sensitivity of a given control system, but standard design procedures are not for robust stability. Therefore we try applying the robust stability condition based on NLCF to RMM procedure. We first formulate the RMM using the robust stability condition of NLCF approach, then we propose the new procedure of the RMM. The point is that the condition includes the measure of sensitivity of the RMM. In the proposed procedure, a cost function is determined through the condition and solved by H$_{\infty}$ contro technique. Finally we show a design example and check the performance..

  • PDF

Matching for the Elbow Cylinder Shape in the Point Cloud Using the PCA (주성분 분석을 통한 포인트 클라우드 굽은 실린더 형태 매칭)

  • Jin, YoungHoon
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.392-398
    • /
    • 2017
  • The point-cloud representation of an object is performed by scanning a space through a laser scanner that is extracting a set of points, and the points are then integrated into the same coordinate system through a registration. The set of the completed registration-integrated point clouds is classified into meaningful regions, shapes, and noises through a mathematical analysis. In this paper, the aim is the matching of a curved area like a cylinder shape in 3D point-cloud data. The matching procedure is the attainment of the center and radius data through the extraction of the cylinder-shape candidates from the sphere that is fitted through the RANdom Sample Consensus (RANSAC) in the point cloud, and completion requires the matching of the curved region with the Catmull-Rom spline from the extracted center-point data using the Principal Component Analysis (PCA). Not only is the proposed method expected to derive a fast estimation result via linear and curved cylinder estimations after a center-axis estimation without constraint and segmentation, but it should also increase the work efficiency of reverse engineering.

Automatic Surface Matching for the Registration of LIDAR Data and MR Imagery

  • Habib, Ayman F.;Cheng, Rita W.T.;Kim, Eui-Myoung;Mitishita, Edson A.;Frayne, Richard;Ronsky, Janet L.
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.162-174
    • /
    • 2006
  • Several photogrammetric and geographic information system applications such as surface matching, object recognition, city modeling, environmental monitoring, and change detection deal with multiple versions of the same surface that have been derived from different sources and/or at different times. Surface registration is a necessary procedure prior to the manipulation of these 3D datasets. This need is also applicable in the field of medical imaging, where imaging modalities such as magnetic resonance imaging (MRI) can provide temporal 3D imagery for monitoring disease progression. This paper will present a general automated surface registration procedure that can establish correspondences between conjugate surface elements. Experimental results using light detection and ranging (LIDAR) and MRI data will verify the feasibility, robustness, and accuracy of this approach.

  • PDF

Updating Smartphone's Exterior Orientation Parameters by Image-based Localization Method Using Geo-tagged Image Datasets and 3D Point Cloud as References

  • Wang, Ying Hsuan;Hong, Seunghwan;Bae, Junsu;Choi, Yoonjo;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.331-341
    • /
    • 2019
  • With the popularity of sensor-rich environments, smartphones have become one of the major platforms for obtaining and sharing information. Since it is difficult to utilize GNSS (Global Navigation Satellite System) inside the area with many buildings, the localization of smartphone in this case is considered as a challenging task. To resolve problem of localization using smartphone a four step image-based localization method and procedure is proposed. To improve the localization accuracy of smartphone datasets, MMS (Mobile Mapping System) and Google Street View were utilized. In our approach first, the searching for candidate matching image is performed by the query image of smartphone's using GNSS observation. Second, the SURF (Speed-Up Robust Features) image matching between the smartphone image and reference dataset is done and the wrong matching points are eliminated. Third, the geometric transformation is performed using the matching points with 2D affine transformation. Finally, the smartphone location and attitude estimation are done by PnP (Perspective-n-Point) algorithm. The location of smartphone GNSS observation is improved from the original 10.204m to a mean error of 3.575m. The attitude estimation is lower than 25 degrees from the 92.4% of the adjsuted images with an average of 5.1973 degrees.

A NEW LANDSAT IMAGE CO-REGISTRATION AND OUTLIER REMOVAL TECHNIQUES

  • Kim, Jong-Hong;Heo, Joon;Sohn, Hong-Gyoo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.594-597
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene. One of which is a reference image, while the other (sensed image) is geometrically transformed to the one. Numerous methods were developed for the automated image co-registration and it is known as a time-consuming and/or computation-intensive procedure. In order to improve efficiency and effectiveness of the co-registration of satellite imagery, this paper proposes a pre-qualified area matching, which is composed of feature extraction with Laplacian filter and area matching algorithm using correlation coefficient. Moreover, to improve the accuracy of co-registration, the outliers in the initial matching point should be removed. For this, two outlier detection techniques of studentized residual and modified RANSAC algorithm are used in this study. Three pairs of Landsat images were used for performance test, and the results were compared and evaluated in terms of robustness and efficiency.

  • PDF

Rational function model-based image matching for digital elevation model

  • PARK CHOUNG-HWAN
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2005.11a
    • /
    • pp.59-80
    • /
    • 2005
  • This Paper Presents a Rational Function Model (RFM)-based image matching technique for IKONOS satellite imagery. This algorithm adopts the object-space approach and reduces the search space within the confined line-shaped area called the Piecewise Matching Line (PLM). Also, the detailed procedure of generating 3-D surface information using the Rational Function model Coefficients (RFCs) is introduced as an end-user point of view. As a result, the final generated Digital Elevation Model (DEM) using the proposed scheme shows a mean error of 2$\cdot$2 m and RMSE of 3$\cdot$8 m compared with that from 1:5000 digital map.

  • PDF