• Title/Summary/Keyword: pollutant elimination

Search Result 23, Processing Time 0.031 seconds

Assessment of Criteria for selecting Rainwater Management Strategies (도시 물순환 건전화를 위한 빗물관리 계획요소 평가)

  • Lee, Tae-Goo;Han, Young-Hae
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.9-17
    • /
    • 2010
  • The purpose of this study is to draw out objective bases for selecting various applicable facilities in case of the establishment of rainwater management strategies. To do so, sixteen facilities were selected from decentralized rainwater management systems that induce rainwater infiltration and detention as well as centralized end-of-pipe type infiltration and detention facilities in local areas. With these facilities, it attempted to evaluate them in terms of sustainability, pollutant elimination, flood control capacity and costs and subsequently analyzed correlations between each characteristic. The outcomes of the analysis were as follows: First was the analysis of characteristics between decentralized rainwater management systems and end-of-pipe rainwater management systems. From the decentralized rainwater management systems, the mulden-rigolen system and grass swale at street level had the highest in the total of the four items while the totals of the underground detention tank and temporary detention site were highest in end-of-pipe rainwater management systems. After analyzing the correlation between different types of facilities and each variable, it can be said that decentralized rainwater management systems have a higher correlation than end-of-pipe rainwater management systems in terms of sustainability whereas the latter are better in flood control capacity than the former. Second, the analysis of correlation in variables of each facility is as follows: first, there is a negative correlation between sustainability value and flood control capacity value; and there is a positive correlation between flood control capability and pollutants elimination. In addition, it revealed that the higher the flood control and pollutant elimination capability the higher the facility costs. Based on these assessments, it is possible to use them as objective selection criteria for facility application in case of site development project or complex plan.

Effect of Biofilter Operation Parameters on Dimethyl Disulfide Removal : Loading, Time, and Concentration

  • Arpacioglu, Bora C.;Kim, Jo-Chun;Allen, Eric R.;Kim, Seoung-Hyun
    • Journal of Environmental Science International
    • /
    • v.11 no.8
    • /
    • pp.783-791
    • /
    • 2002
  • A laboratory-scale dual-column biofilter system was used to study the biofiltration of dimethyl disulfide(DMDS). The biofiltration of DMDS was found to depend on the pollutant loadings rather than the inlet concentrations. It was estimated that the pollutant was only inhibitory to the operation of the biofilters at DMDS concentrations greater than 5500 ppmv A residence time of 30 seconds(120 m$^3$/m$^2$/h volumetric loading) was determined as appropriate for efficient operation(>90%). The maximum elimination capacity for both compost mixtures under the current experimental conditions was found to range from 7.5 to 10 g-DMDS/m$^3$/h. A lower DMDS maximum elimination capacity was exhibited under acidified conditions.

Effectiveness of elimination inflowing algae in water treatment plant using natural algae remover (천연 조류 제거제를 이용한 정수장 유입 조류 제거 효율)

  • Jung, Hoyoung;Kim, Younghee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.311-319
    • /
    • 2019
  • The purpose of this study was to analyze water treatment characteristics, including the efficiency of removing algae from water purification plants, by installing a demonstration facility for decontamination of algae, including natural algae remover injection equipment, in the water purification plant. Jar-test showed that the optimum injection of natural decontaminant was 20 mg/L. Of the water contaminant treatment efficiency of the intake and water purification plants, Chl-a averaged 74.0% elimination efficiency from $5.0mg/m^3$ to $1.3mg/m^3$ and the maximum treatment efficiency was 91.5% removal efficiency when the inflow concentration of Chl-a was $11.8mg/m^3$. In addition, 51.2% and 47.1% of the taste and odor indicator items, geosmin and 2-MIB, resulted from the overgrowth and decaying of algae, respectively, to identify toxic substances and odor reduction effects. In addition, elimination efficiencies of SS and Turbidity materials were higher than 70.0%. In the injection of natural algae remover, no effects such as sudden changes in water quality due to secondary reactions were found, and appropriate levels were maintained under water treatment conditions.

Efficient Elimination of Tetracycline by Ferrate (VI): Real Water Implications

  • Levia Lalthazuala;Lalhmunsiama Lalhmunsiama;Ngainunsiami Ngainunsiami;Diwakar Tiwari;Seung Mok Lee;Suk Soon Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.318-325
    • /
    • 2023
  • The detection of antibiotics in treated wastewater is a global concern as it enters water bodies and causes the development of antibiotic resistance genes in humans and marine life. The study specifically aims to explore the potential of ferrate (VI) in eliminating tetracycline (TCL). The degradation of TCL is optimized with parametric studies, viz., the effect of pH and concentration, which provide insights into TCL elimination. The increase in pH (from 7.0 to 10.0) favors the percentage removal of TCL; however, the increase in TCL concentrations from 0.02 to 0.3 mmol/L caused a decrease in percentage TCL removal from 97.4 to 29.1%, respectively, at pH 10.0. The time-dependent elimination of TCL using ferrate (VI) followed pseudosecond-order rate kinetics, and an apparent rate constant (kapp) was found at 1978.8 L2 /mol2 /min. Coexisting ions, i.e., NaNO3, Na2HPO4, NaCl, and oxalic acid, negligibly affect the oxidation of TCL by ferrate (VI). However, EDTA and glycine significantly inhibited the elimination of TCL using ferrate (VI). The mineralization of TCL using ferrate (VI) was favored at higher pH, and it increased from 18.57 to 32.52% when the solution pH increased from pH 7.0 to 10.0. Additionally, the real water samples containing a relatively high level of inorganic carbon spiked with TCL revealed that ferrate (VI) performance in the removal of TCL was unaffected, which further inferred the potential of ferrate (VI) in real implications.

A Basic Study on the Remediation of Railroad Oil-contamination Soil (철도 유류 오염토양의 복원방안에 관한 기초연구)

  • Jung Woo-Sung;Park Duck-Shin;Yang Ji-Won
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.484-490
    • /
    • 2003
  • Fundamental data was obtained to apply to the real contaminated soil of railroad by analyzing pollutant-elimination efficiency and process variables through electro-kinetic technology as well as by investigating Pollution sources of railroad soil contaminated by oil and pollution propensities.

  • PDF

A Study on the Management System Improvement of Effluent Water Qualities for Public Sewage Treatment Facilities in Korea (우리나라 공공하수처리시설의 방류수 수질 관리체계 개선방안 고찰 - 미국, 일본, 유럽의 공공하수처리시설 방류수 수질 관리제도를 중심으로 -)

  • Jeong, Donghwan;Choi, Incheol;Cho, Yangseok;Chung, Hyenmi;Kwon, Ohsang;Yu, Soonju;Yeom, Icktae;Son, Daehee
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.4
    • /
    • pp.296-314
    • /
    • 2014
  • In recent years, Ministry of Environment (MOE) has been implementing a phased strengthening of the effluent standards for sewage treatment plants. In this regard, a comprehensive system should be developed to help check the appropriateness of such standards by specifying the grounds for standard-setting and investigating the current operation of sewage treatment plants clearly. It is necessary to establish a new standard-setting system for the effluent that is in a closer connection with the environmental criteria and rating systems. In the United States, the federal government provides guidelines on the least provisions and requirements for the Publicly Owned Treatment Works (POTWs). Local governments set the same or stricter guidelines that reflect the characteristics of each state. In Japan, the sewage treatment plants are subject to both the effluent standards and the discharge acceptable limits to pubic waters under the sewerage law. Specific requirements and limits are set in accordance with local government regulations. The European Union imposes sewage treatment plants with different provisions for effluent standards, depending on the sensitivity of public waters to eutrophication. The effluent standards for sewage treatment plants are classified by pollutant loads discharged to receiving waters. MOE also needs to introduce systems for setting new parameter standards on a POTW effluent by applying statistical means and treatment efficiencies or optimal treatment techniques, as seen in the cases of the US National Pollutant Discharge Elimination System (NPDES) or the EU Integrated Pollution Prevention and Control (IPPC).

Extraction of Phenol from the Contaminated Soil Using Microwave Energy (Microwave Energy를 이용한 오염토양에서 Phenol의 추출)

  • 이기환;이태호;김윤아
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.447-459
    • /
    • 2003
  • This study was carried out to develop an efficient process far the elimination of phenol pollutant from soils. An microwave-assisted process (MAP) and a conventional Soxhlet extraction method (SEM) were employed to extract phenol from two types of soils. The effects of extraction methods, aged time of the spiked soil samples, extraction solvent and extraction time on the extraction performance were compared. Our results demonstrate that the recoveries from standard soil spiked were at least 10% higher fer MAP than these f3r the conventional Soxhlet. The extraction time by MAP requires significantly shelter time (1 min) than 15 h of the conventional Soxhlet. The recoveries from non-contaminated soil spiked with phenol were also almost identical f3r above results. The reduction of the extraction times with efficiency higher than that afforded by the conventional Soxhlet technique supports the suitability of the MAP method.

Groundwater Flow Model for the Pollutant Transport in Subsurface Porous Media Theory and Modeling (지하다공질(地下多孔質) 매체(媒體)속에서의 오염물질이동(汚染物質移動) 해석(解析)을 위한 지하수(地下水)흐름 모형(模型))

  • Cho, Won Cheal
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.97-106
    • /
    • 1989
  • This paper is on the modeling of two-dimensional groundwater flow, which is the first step of the development of Dynamic System Model for groundwater flow and pollutant transport in subsurface porous media. The particular features of the model are its versatility and flexibility to deal with as many real-world problems as possible. Points as well as distributed sources/sinks are included to represent recharges/pumping and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Sources/sinks strength over each element and node, hydraulic head at each Dirichlet boundary node and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution methed for the matrix equation approximating the partial differential equation of groundwater flow. The model also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. The groundwater flow model shall be combined with the model of pollutant transport in subsurface porous media. Then the combined model, with the applications of the Eigenvalue technique and the Dynamic system theory, shall be improved to the Dynamic System Model which can simulate the real groundwater flow and the pollutant transport accurately and effectively for the analyses and predictions.

  • PDF

Control of Dimethyl Sulfide Emissions Using Biofiltration

  • Kong, Sei-Hun;Kim, Jo-Chun;Allen, Eric R.;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.11 no.8
    • /
    • pp.819-827
    • /
    • 2002
  • Laboratory scale experiments were conducted to evaluate the performance of a biofilter for eliminating dimethyl sulfide(DMS). A commercial compost/pine bark nugget mixture served as the biofilter material for the experiments. The gas flow rate and DMS concentration entering the filter were varied to study their effect on the biofilter efficiency. The operating parameters, such as the residence time, inlet concentration, pH, water content, and temperature, were all monitored throughout the filter operation. The kinetic dependence of the DMS removal along the column length was also studied to obtain a quantitative description of the DMS elimination. High DMS removal efficiencies(>95%) were obtained using the compost filter material seeded with activated sludge. DMS pollutant loading rates of up to 5.2 and 5.5 g-DMS/m$^3$/hr were effectively handled by the upflow and downflow biofilter columns, respectively. The macrokinetics of the DMS removal were found to be fractional-order diffusion-limited over the 9 to 25 ppm range of inlet concentrations tested. The upflow column had an average macrokinetic coefficient(K$\_$f/) of 0.0789 $\pm$ 0.0178 ppm$\^$$\sfrac{1}{2}$//sec, while the downflow column had an average coefficient of 0.0935 $\pm$ 0.0200 ppm$\^$$\sfrac{1}{2}$//sec. Shorter residence times resulted in a lower mass transfer of the pollutant from the gas phase to the aqueous liquid phase, thereby decreasing the efficiency.

Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang

  • Zhenzhong Liu;Kaixuan Tan;Chunguang Li;Yongmei Li;Chong Zhang;Jing Song;Longcheng Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1476-1484
    • /
    • 2023
  • Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%-48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.