• Title/Summary/Keyword: polymer particle

Search Result 730, Processing Time 0.025 seconds

The Effect of Rubber Particle Size and Polymer Properties on Impact Strength and Fracture Behavior of Rubber/Polymer Composites (고무입자의 크기와 폴리머의 물성이 고무/폴리머 복합재료의 충격강도 및 파괴거동에 미치는 영향)

  • 이창수;강병일;조길원;황운봉
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.1.1-4
    • /
    • 1999
  • The toughening mechanism and fracture behavior of rubber/polymer composites were investigated with respect to two factors; (1) the composition ratio of polymers(PPO and PS which have a different chain flexibility) and (ii) the rubber particle size in PPO/PS blend system Izod impact test and fractographic observation of the fracture surface using scanning electron microscope were conducted, Finite element analysis were carried out to gain understanding of plastic deformation(shear yielding and crazing) of these materials.

  • PDF

The ink jet printing of high conductivity circuits on various substrates using polymer capped nano-particle silver

  • Edwards, Charles O.;Howarth, James;James, Anthony
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.814-816
    • /
    • 2005
  • In this paper, we describe how specially developed polymer capped, nano-particle silver inks can be used to print circuitry for applications like displays, RFID antennas and "disposable electronics". The requirements of printing on temperature sensitive flexible substrates (such as polymer films and papers) that require low temperature curing is also discussed.

  • PDF

Influences of Detention Time, Particle Size Distribution, and Filter Medium on Waterworks Sludges Dewatering (체류시간, 입도분포 및 여재가 정수 슬러지의 탈수에 미치는 영향)

  • Kim, Kwang-Soo;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.121-128
    • /
    • 2009
  • Objectives of this study were to investigate influencing factors of detention time, particle size distribution, and filter medium characteristics for waterworks sludge dewatering. The stepped pressure filtration was carried out with lab scale apparatus and the filter press pilot test for dewatering was conducted at the water treatment plant. Effects of filter medium and polymer dose were examined through observing water content and dewatering velocity and cyclic dewatering rate with filter press pilot test. Relationships among detention time, particle size distribution and filtration resistance were analyzed. Prolongation of sludge detention time was found to cause blinding phenomenon in cake and filter medium and to decrease dewatering process efficiency. The average specific resistance increased according to detention time. In pilot test of dewatering for thickened sludge with Nylon Multi-NY840D and Nylon Mono-100% filter media, dewatering velocities were 0.92 and $0.93kg\;DS/m^2{\cdot}hr$ according to 0.1% polymer dose of dried solids weight base. And cyclic dewatering rates were 2.45 and $2.50kg\;DS/m^2{\cdot}cycle$ cycle for the Nylon Multi-NY840D and Nylon Mono-100% media. Dewatering velocity of polymer dosed sludge was observed to be higher than that of non-polymer sludge.

Synthesis of Polymer-Carbon Nanotubes Composite Nanoparticles and Their Applications into Forming Hybrid Composite Thin Films (폴리머-탄소나노튜브 복합체 에어로졸 입자의 생성 및 이를 이용한 하이브리드 복합체 박막 제조)

  • Kim, Whi-Dong;Ahn, Ji-Young;Kim, Soo Hyung
    • Particle and aerosol research
    • /
    • v.6 no.2
    • /
    • pp.61-67
    • /
    • 2010
  • In this paper, we describe a new method to form polymer thin films, in which carbon nanotubes (CNTs) are homogeneously distributed so that they can strengthen the mechanical property of resulting polymer film. To do so, we first homogeneously mixed CNTs with polymer in a DMF solvent. With the assistance of ultrasonic nebulizer, the polymer/CNT solution was then aerosolized into micro-sized droplets and finally turned into solidified polymer/CNT composite particles by gas-phase drying process. As the results of SEM and TEM analysis, CNTs were found to be homogeneously immobilized in the polymer matrix particles due to rapid drying process in the gas phase. For comparison purpose, (i) the polymer/CNTs composite particles prepared by aerosol processing method and (ii) polymer/CNTs sheets prepared by simple solution-evaporation method were employed to form polymer/CNTs composite thin films using a hot press. As the result, the aerosol processing of composite particles was found to be a much more effective method to form homogeneously distributed-CNTs in the polymer matrix thin film.

An Approach to the Influence of Particle Size Distribution of Leuco Vat Dye Converted by a Reducing Agent

  • Shim Woo-Sub;Lee Jung-Jin;Shamey Renzo
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.164-168
    • /
    • 2006
  • Three vat dyes have been applied to regular viscose rayon and their dyeing and wash fastness properties were evaluated. Particle size determination was undertaken to obtain information about the size of dye particles converted by a reducing agent, to see if dye particle size has an affect on dyeing properties of regular viscose rayon. It is observed that viscose rayon exhibits more dyeability with reducing agent concentrations between 5-7.5 g/l. Also, we found that the vat dyeing system is greatly affected by the particle size of the vat dye converted to leuco form by a reducing agent.

Dielectric Properties of Polymer-ceramic Composites for Embedded Capacitors

  • Yoon, Jung-Rag;Han, Jeong-Woo;Lee, Kyung-Min
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.116-120
    • /
    • 2009
  • Ceramic-polymer composites have been investigated for their suitability as embedded capacitor materials because they combine the processing ability of polymers with the desired dielectric properties of ceramics. This paper discusses the dielectric properties of the ceramic ($BaTiO_3$)-polymer (Epoxy) composition as a function of ceramic particle size at a ceramic loading of 40 vol%. The dielectric constant of these ceramic-polymer composites increases as the powder size decreases. Results show that ceramic-polymer composites have a high dielectric constant associated with the $BaTiO_3$ powder with a 200 nm particle size, high insulation resistance, high breakdown voltage (> 22 KV/mm), and low dielectric loss (0.018-0.024) at 1 MHz.

Effect of Dispersion of Silver Particles on the Electrical Conduction in Silver-Polymer Composites. (Silver-polyner 적합도전류물에서 은립자의 분석상태가 전기운도에 미치는 영향)

  • 김한성;김재호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.1
    • /
    • pp.55-62
    • /
    • 1988
  • The variation of electrical resistivity of silver particle-filled polymers with the volume percent of silver particles was investigated. Also, the relationships between the surface tension of polymer and dispersion effect of silver particles were studied to find the steep drop of electrical resisivity, in view of agglomerate morphology. The critical volume precent of silver particles varied depending on the polymer species and increased with the increasing surface tension of polymer. The steep variation of resistivity with the increasing temperature was explained with the expansion of polymer at the melting temperature of polymer. The conductive break down current increased with the increasing volume percent of silver particles in the Ag/LDPE system and that was attributed to heat of Joule taken througn the contact area between the silver particle.

  • PDF

Preparation and Characterizations of C60/Polystyrene Composite Particle Containing Pristine C60 Clusters

  • Kim, Jung-Woon;Kim, Kun-Ji;Park, Soo-Yeon;Jeong, Kwang-Un;Lee, Myong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2966-2970
    • /
    • 2012
  • Fullerene/polystyrene ($C_{60}$/PS) nano particle was prepared by using emulsion polymerization. Styrene and fullerene were emulsified in aqueous media in the presence of poly(N-vinyl pyridine) as an emulsion stabilizer, and polymerization was initiated by water soluble radical initiator, potassium persulfate. The obtained nano particles have an average diameter in the range of 400-500 nm. The fullerene contents in the nano particle can be controlled up to 15 wt % by varying the feed ratio, which was confirmed by themogravimetric analysis (TGA) and elemental analysis (EA). The structure and morphologies of the $C_{60}$/PS nano particles were examined by various analytical techniques such as dynamic light scattering (DLS), scanning electron microscope (SEM), transmission electron microscope (TEM), electron diffraction (ED) pattern, X-ray powder diffraction (XRD), and UV spectroscopy. Unlike conventional $C_{60}$/PS particles initiated by organic free radical initiators, in which the fullerene is copolymerized forming a covalent bond with styrene monomer, the prepared $C_{60}$/PS nano particles contain pristine fullerene as secondary particles homogeneously distributed in the polystyrene matrix.

Preparation and Characterization of Monodispersed and Nano-sized Cu Powders

  • Kim, Tea-Wan;Lee, Hyang-Mi;Kim, Yong-Yee;Hwang, Kyu-Hong;Park, Hong-Chae;Yoon, Seog-Young
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.464-465
    • /
    • 2006
  • Monodispersed and nano-sized Cu powders were synthesized from copper sulfate pentahydrate $(CuSO_4{\cdot}5H_2O)$ inside a nonionic polymer matrix by using wet chemical reduction process. The sucrose was used as a nonionic polymer network source. The influences of a nonionic polymer matrix on the particle size of the prepared Cu powders were characterized by means of X-ray diffraction), scanning electron microscopy), and particle size analysis). The smallen Cu powders with size of approximately 100 nm was obtained with adding of 0.04M sucrose at reaction temperature of $60\;^{\circ}C$. The particle size of the Cu powders prepared by the reduction inside polymer network was strongly dependent of the sucrose content and reaction temperature.

  • PDF

Synthesis of Microspheric Silicone Polymer Beads by UV Irradiation and Alkoxy Hydrolysis (UV 조사와 Alkoxy 가수분해 법을 이용한 구형 실리콘 마이크로 고분자 비드의 합성)

  • Park, Seung-Wook;Kim, Jung-Joo;Hwang, Eui-Hwan;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.377-384
    • /
    • 2008
  • In this study, the microsphere silicone polymer beads were synthesized by UV irradiation and alkoxy hydrolysis. The coefficient of variation (CV) of microsphere silicone polymer beads were decreased with increasing UV intensity, reaction time. The mean particle diameter, refractive index, and pH value were $4.1{\mu}m$, 1.43 and 7.5, respectively. Also, the true and bulk specific gravity, moisture content were 1.30, and 0.40, below 2%. The mean particle diameter and CV were the lowest at 0.1 wt% hexamethyldisilazane (HMDS) and their roundnesses were $0.95{\sim}0.98{\mu}m$ values. The particle dispersion index of microsphere silicone polymer beads was 4.92 at 450 W, 90 min and the yield was increased to 11.3% at 20 wt% methyltrimethoxysilane (MTMS). The mean particle diameter was decreased with increasing the stirring rate and reaction temperature.