• 제목/요약/키워드: polyurethane

Search Result 1,596, Processing Time 0.029 seconds

Study on Peel Strength Measurement of 3D Printing Composite Fabric by Using FDM (FDM 방식을 활용한 3D 프린팅 복합직물의 박리강력 측정 연구)

  • Han, Yoojung;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.23 no.2
    • /
    • pp.77-88
    • /
    • 2019
  • One way of appling 3D printing to garments is through the combination of 3D polymer filaments in textile fabrics. it is essential to understand the interface between the polymer and the 3D composite fabric in order to enhance the adhesion strength between the polymers and the peeling strength between the fabric and the polymer. In this study, the adhesion of composite printed specimens using a combination of fabric and polymers for 3D printing was investigated, and also the change in adhesion was investigated after the composite fabric printed with polymers was subjected to constant pressure. Through this process, the aims to help develop and utilize 3D printing textures by providing basic data to enhance durability of 3D printing composite fabrics. The measure of the peeling strength of the composite fabric prepared by printing on a fabric using PLA, TPU, Nylon polymer was obtained as follows; TPU polymer for 3D printing showed significantly higher peel strength than polymers of composite fabric using PLA and Nylon polymer. In the case of TPU polymer, the adhesive was crosslinked because of the reaction between polyurethane and water on the surface of the fabric, thus increasing the adhesion. It could be observed that the adhesion between the polymer and the fiber is determined more by the mechanical effect rather than by its chemical composition. To achieve efficient bonding of the fibers, it is possible to modify the fiber surface mechanically and chemically, and consider the deposition process in terms of temperature, pressure and build density.

Characteristics of Accidents Distribution in General Polymers Manufacturing Processes (범용 고분자 제조공정의 재해분포 특성)

  • Hwang, Dong-Jun;Lee, Keun Won
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.47-53
    • /
    • 2019
  • A variety of general purpose polymer products such as polyethylene (PE), polypropylene (PVC), polyvinyl chloride (PVC), polystyrene (PS) and polyurethane (PU) are widely produced and used in the industrial field. Many industrial accidents have occurred due to fire and explosion at the manufacturing site. In order to prevent such accidents, it is important to collect and analyze accident cases that occurred in the past to identify the characteristics of accidents and to use them to prevent the same kind of accidents or similar accidents. In this study, the accident distribution characteristics of general polymer manufacturing process were examined by using SPSS based on the database of the industrial accident statistics system operated by the Korea Occupational Safety and Health Agency. These results can be used to prevent accidents in the general-purpose polymer product process and ensure the safety of the process.

Synthesis and Comparison of Properties of Waterborne Polyurethanes Using Polyols Containing 3-Methyl-1,5-Pentanediol (MPD) (3-Methyl-1,5-Pentanediol (MPD)을 함유한 폴리올을 이용한 수분산 폴리우레탄의 합성 및 특성 비교)

  • Kim, Na-Young;Sur, Suk-Hun
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.39-46
    • /
    • 2021
  • Waterborne polyurethanes (WPU) was synthesized using polyester polyol and polycarbonate polyol containing 3-Methyl-1,5-pentanediol (MPD) in a branched structure. To compare physical properties, WPUs were synthesized using polyester polyol obtained from 1,4-butanediol (BD) and adipic acid and polycarbonate polyol obtained from 1,6-hexane diol (HD)/ 1,4-butanediol (BD). This study investigated the effect of polyol molecular structure (molecular structure in soft segments) on the physical properties of WPUs. In the case of WPUs synthesized using polyols containing MPD, 100% modulus and tensile strength were lower than that without MPD, and elongation was higher. The transparency of WPU films with MPD were slightly better than WPU films without MPD.

Nanoengineered, cell-derived extracellular matrix influences ECM-related gene expression of mesenchymal stem cells

  • Ozguldez, Hatice O.;Cha, Junghwa;Hong, Yoonmi;Koh, Ilkyoo;Kim, Pilnam
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.337-345
    • /
    • 2018
  • Background: Human mesenchymal stem cells (hMSCs) are, due to their pluripotency, useful sources of cells for stem cell therapy and tissue regeneration. The phenotypes of hMSCs are strongly influenced by their microenvironment, in particular the extracellular matrix (ECM), the composition and structure of which are important in regulating stem cell fate. In reciprocal manner, the properties of ECM are remodeled by the hMSCs, but the mechanism involved in ECM remodeling by hMSCs under topographical stimulus is unclear. In this study, we therefore examined the effect of nanotopography on the expression of ECM proteins by hMSCs by analyzing the quantity and structure of the ECM on a nanogrooved surface. Methods: To develop the nanoengineered, hMSC-derived ECM, we fabricated the nanogrooves on a coverglass using a UV-curable polyurethane acrylate (PUA). Then, hMSCs were cultivated on the nanogrooves, and the cells at the full confluency were decellularized. To analyze the effect of nanotopography on the hMSCs, the hMSCs were re-seeded on the nanoengineered, hMSC-derived ECM. Results: hMSCs cultured within the nano-engineered hMSC-derived ECM sheet showed a different pattern of expression of ECM proteins from those cultured on ECM-free, nanogrooved surface. Moreover, hMSCs on the nano-engineered ECM sheet had a shorter vinculin length and were less well-aligned than those on the other surface. In addition, the expression pattern of ECM-related genes by hMSCs on the nanoengineered ECM sheet was altered. Interestingly, the expression of genes for osteogenesis-related ECM proteins was downregulated, while that of genes for chondrogenesis-related ECM proteins was upregulated, on the nanoengineered ECM sheet. Conclusions: The nanoengineered ECM influenced the phenotypic features of hMSCs, and that hMSCs can remodel their ECM microenvironment in the presence of a nanostructured ECM to guide differentiation into a specific lineage.

Analysis of Changes in Temperature and Humidity by Material Combination Using 3D Printing (3D 프린팅을 활용한 재료조합에 따른 온습도 변화 분석)

  • Lee, Heeran;Kim, Soyoung;Lee, Yejin;Lee, Okkyung
    • Fashion & Textile Research Journal
    • /
    • v.24 no.1
    • /
    • pp.127-137
    • /
    • 2022
  • Recently, various clothing items are being developed using 3D printing technology, but comfort has become an issue while wearing them for a long time. Therefore, this study researched on how the temperature and humidity of the devices developed by 3D printing change depending on the material combination. Five types of material combinations (EVA foam, TPU density 10%, TPU density 30%, EVA foam+TPU density 10%, and EVA foam+TPU density 30%) were selected as variables, and the experiment was conducted for two different cases with and without a cover. All the ten types of samples were placed on the hot plate set at 36℃, and the surface temperature and humidity were measured at three different points for 10 minutes. As a result, the case with only TPU showed the greatest temperature change while the case with 100% EVA foam showed the least temperature change. The humidity of the surface layer gradually decreased with time for 100% EVA foam. For the case with TPU materials, the moisture was transferred to the surface layer at first, thereby increasing the humidity but then dropped significantly. Meanwhile, the cases with the cover on showed similar tendencies of change in both temperature and humidity where the overall temperature and humidity delivery were slow.

Design of motion-adaptable 3D printed impact protection pad (동작 가변적 3D 프린팅 충격보호패드의 설계)

  • Park, Junghyun;Lee, Jinsuk;Lee, Jeongran
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.3
    • /
    • pp.403-413
    • /
    • 2022
  • The purpose of this study was to develop a 3D mesh-type impact protection pad with excellent motion adaptability and functionality by applying 3D printing technology. The hexagonal 3D mesh, which constitutes the basic structure of the pad, comprises two types: small and large. The bridge connecting the basic units was designed as the I-type, V-type, IV-type, and VV-type. After evaluating the characteristics of the bridge, it was found that the V-type bridge had the highest flexibility and tensile elongation. The hip joint pad and knee pad were completed by combining the hexagonal 3D mesh structure with the optimal bridge design. The impact protection pad was printed using a fused deposition modeling-type 3D printer with a filament made of thermoplastic polyurethane material, and the protection pad's performance was evaluated. When an impact force of approximately 6,500N was applied to the pad, the force attenuation percentage was 78%, and when an impact force of approximately 8,000N was applied, the force attenuation percentage was 75%. Through these results, it was confirmed that the 3D-printed impact protection pad with a hexagonal 3D mesh structure connected by a V-shaped bridge developed in this study can adapt to changes in the body surface according to movement and provides excellent impact protection performance.

Color Characteristics of 3D-Printed TPU Material Applied with Ultra-Violet Curable Digital Printing Process (자외선 경화형 디지털 프린팅을 이용한 3D 프린팅 TPU 소재의 색채 특성)

  • Lee, Sunhee;Park, Soyeon;Jung, Imjoo;Lee, Jungsoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.6
    • /
    • pp.1052-1062
    • /
    • 2021
  • This study aims to confirm the possibility of Ultra-Violet (UV)-printed 3D printing materials using thermal polyurethane (TPU) with CMYK colors by applying an eco-friendly UV digital printing process. A UV-printed 3D printing TPU material was prepared with cycles of UV printing and CMYK colors. Dyeability of the 3D TPU samples with cycles of UV printing and CMYK were analyzed for thickness, weight, surface roughness, reflectance, colorimetry, and K/S values. The thickness and weight of 3D-printed TPU samples with cycles of UV printing are increased with overprints from 1 to 5. The surface roughness of 3D-printed TPU samples with increasing UV prints were decreased, meaning that the surface of TPU samples becomes gradually smoother. The reflectance spectra of CMYK UV-printed TPU samples showed the surface reflectance within each characteristic wavelength of CMYK. The 3D-printed TPU samples, subjected to UV printing twice or more, showed low surface reflectance. After examining the L*a*b* of the 3D-printed TPU samples by the cycles of UV printing, the study found that the more UV got printed more than 2 times, the closer the color to each CMYK.

Comparison of 3D accuracy of three different digital intraoral scanners in full-arch implant impressions

  • Ozcan Akkal;Ismail Hakki Korkmaz;Funda Bayindir
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.4
    • /
    • pp.179-188
    • /
    • 2023
  • PURPOSE. This in vitro study aimed to evaluate the performance of digital intraoral scanners in a completely edentulous patient with angled and parallel implants. MATERIALS AND METHODS. A total of 6 implants were placed at angulations of 0°, 5°, 0°, 0°, 15°, and 0° in regions #36, #34, #32, #42, #44, and #46, respectively, in a completely edentulous mandibular polyurethane model. Then, the study model created by connecting a scan body on the implants was scanned using a model scanner, and a 3D reference model was obtained. Three different intraoral scanners were used for digital impressions (PS group, TR group, and CS group, n = 10 in each group). The distances and angles between the scan bodies in these measurement groups were measured. RESULTS. While the Primescan (PS) impression group had the highest accuracy with 38 ㎛, the values of 104 ㎛ and 171 ㎛ were obtained with Trios 4 IOSs (TR) and Carestream 3600 (CS), respectively (P = .001). The CS scanner constituted the impression group with the highest deviation in terms of accuracy. In terms of dimensional differences in the angle parameter, a statistically significant difference was revealed among the mean deviation angle values according to the scanners (P < .001). While the lowest angular deviation was obtained with the PS impression group with 0.185°, the values of 0.499° and 1.250° were obtained with TR and CS, respectively. No statistically significant difference was detected among the impression groups in terms of precision values (P > .05). CONCLUSION. A statistically significant difference was found among the three digital impression groups upon comparing the impression accuracy. Implant angulation affected the impression accuracy of the digital impression groups. The most accurate impressions in terms of both distance and angle deviation were obtained with the PS impression group.

Evaluation of Physical Properties of Material Combination for Fabricating Protection Pads for Women's Army Combat Uniforms (여군 전투복 내 관절 부위 보호 패드 개발을 위한 설계 변인 조합에 따른 물성 평가)

  • Okkyung Lee;Heeran Lee;Soyoung Kim;Yejin Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.2
    • /
    • pp.311-322
    • /
    • 2023
  • In this study, the properties of various material combinations were evaluated and an ideal material for fabricating protection pads for women's army combat uniforms was determined. Eight specimens were used for the evaluation: two types of materials, namely thermoplastic polyurethane for 3D printing, T and ethylene-vinyl acetate, E; two infill densities, namely 10%, 10 and 30%, 30; two types of pad designs, i.e., without holes, A and with holes, B; 2×2×2=8 and control E. The tensile strength, flexural strength, impact absorption, and weight of these specimens were evaluated. Results revealed that E was the most flexible material; however, its tensile strength and impact absorption were very low. Protection pads made from T (T-10A, T-10B, T-30A, and T-30B) had excellent tensile strength and impact absorption; however, they had low performance in ease of movement. Alternatively, protection pad with holes and an infill density of 30% produced using a combination of T and E had a high initial tensile modulus and exhibited excellent impact absorption. Moreover, it was flexible and light, which satisfies the standards and conditions required by protection pads. However, if T-E-10A and T-E-30B exhibited low impact absorption, as required, they can be regarded as appropriate materials for protection pads.

Comparison of Performance & Jet Fuel Oil Resistance of Joint Sealant Materials for Airside (공항용 조인트 충진재의 성능 및 내유저항특성 비교연구)

  • Park, Tae Soon;Lee, Keun Sik;Lee, Su Hui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.587-592
    • /
    • 2006
  • The joint sealants used in the airside should resist the high temperature of the jet blast and the jet fuel oil spilled when the aircraft is maintained and filled. The material of joint sealant for the airside should be different from that for the road due to these characteristics. Three different kinds of the joint sealant materials were tested in this paper. The materials include the polysulfide, the polyurethane and the silicon. The test results show that the physical properties and the performance of the polysulfide show the high resistance to the jet blast and the jet fuel oil. When the characteristics of the airside considered, the polysulfide may apply in the both of the runway and the apron area, the polyuretane can be applied the taxiway. The use of the silicon sealant is not recommended for the airside.