• Title/Summary/Keyword: polyvinylidene fluoride

Search Result 238, Processing Time 0.03 seconds

Designing Flexible Thin Film Audio Systems Utilizing Polyvinylidene Fluoride

  • Um, Keehong;Lee, Dong-Soo;Pinthong, Chairat
    • International journal of advanced smart convergence
    • /
    • v.2 no.2
    • /
    • pp.16-18
    • /
    • 2013
  • In this paper, we develop a method to design a flexible thin film audio systems utilizing Polyvinylidene fluoride. The system we designed showed the properties of increased transparency and sound pressure levels. As an input terminal transparent oxide thin film is adopted. In order to provide dielectric insulation, a transparent insulating oxide thin film is coated to obtain double -layered structure. In the range of visible light, the output from the output of the system showed an increased and improved sound pressure level. The piezoelectric polymer film of polyvinylidene fluoride (PVDF) is used to produce mechanical vibration due to the applied electrical voltage signal. An analog electric voltage signal is transformed into sound waves in the audio system.

Characteristics of High Frequency Ultrasonic Transducer Employing Polyvinylidene Fluoride and Detectability of Flaw in Cr-Ni Steel (PVDF 수침용 고주파수 초음파 탐촉자의 검출장과 Cr-Ni 강에서의 결함 검출능 측정)

  • Kim, Byoung-Geuk;Lee, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.1
    • /
    • pp.23-30
    • /
    • 1997
  • Recently high frequency ultrasonic transducers to employ polyvinylidene fluoride(PVDF) or polyvinylidene fluoride trifluoroethylene P(VDF-TrFE) have been used to detect small flaws in immersion testing. The detection field depending on the water path between the transducer and a specimen and the path in a tested specimen was measured using a PVDF transducer with nominal frequency 80MHz. Also, C-scan and B-scan were performed for the specimens made of Cr-Ni steel with the artificial flaws, the flat-bottom holes with diameter ranging from $50{\mu}m$ to $560{\mu}m$ at 12mm depth. As the result, the flaws with diameter larger than $280{\mu}m$ were detected, but the flaws with the ratio of diameter to wavelength smaller than about 0.48 were not detected. That the smaller flaws could not be detected was attributed to the attenuation of high frequency components in the steel specimens.

  • PDF

Polarization behavior of polyvinylidene fluoride films with the addition of reduced graphene oxide

  • Lee, Junwoo;Lim, Sangwoo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.478-485
    • /
    • 2018
  • The effect of reduced graphene oxide (RGO) addition on the dielectric and piezoelectric behavior of the polyvinylidene fluoride (PVDF) films was studied. Dielectric constant increased by four times and piezoelectric coefficient also increased twice by the addition of RGO in the PVDF films. Based on capacitance-voltage and ellipsometry measurements and the Kramers-Kronig transformation, it is concluded that the enhanced dielectric and piezoelectric properties of the PVDF/RGO films resulted from the increased orientational polarization due to a phase transition from nonpolar crystalline ${\alpha}$ phase to polar crystalline ${\beta}$ phase in the PVDF structure.

Electrical Characteristics and Microwave Properties of MgO Bicrystal Josephson Junction with Polyvinylidene Fluoride Gate Electrode (Polyvinylidene Fluoride를 게이트 전극으로 이용한 MgO bicrystal Josephson junction의 전기 특성 및 마이크로파 특성 연구)

  • Yun, Yongju;Kim, Hyeoungmin;Park, Gwangseo;Kim, Jin-Tae
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.74-77
    • /
    • 2001
  • We have fabricated a high-Tc superconductive transistor with polyvinylidene fluoride (PVDF) gate electrode on MgO bicrystal Josephson junction by spin-coating method. The PVDF ferroelectric film is found to be suitable fur a gate electrode of the superconductive transistor since it has not only small leakage current but also high dieletric constant at low temperature. For the application of superconducting-FET, we investigated millimeter wave properties (60 GHz band) of the Josephson junction with PVDF gate electrode.

  • PDF

Charge Storage Behavior of the Carbons Derived from Polyvinylidene Chloride-resin and Polyvinylidene Fluoride in Different pH Electrolytes (다른 pH의 전해질에서 polyvinylidene chloride-resin와 polyvinylidene fluoride로부터 합성된 다공성 탄소의 전하 저장 거동)

  • Sang-Eun, Chun
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.394-401
    • /
    • 2022
  • Two polymer precursors, polyvinylidene chloride-resin (PVDC-resin) and polyvinylidene fluoride (PVDF), are assembled into the microporous carbon by pyrolysis. Microporous carbon is advantageous as an electrode for supercapacitors that store electric charges through ion adsorption/desorption. The pyrolysis also turns the various heteroatoms of two precursors into functional groups, contributing to the additional charge storage. The analysis of the porous structure and function group during carbonization are important to develop the carbon for energy storage. Here, we analyzed the functional groups of two polymer-derived carbons through X-ray photoelectron spectroscopy. The electrochemical properties of the functional groups were explored in various pH electrolytes. The specific capacitance of two carbons in the acidic electrolyte (1 M H2SO4) was improved compared to that in the neutral electrolyte (0.5 M Na2SO4) due to the faradaic charge/discharge reaction of the quinone functional group. In particular, the carbon electrode derived from PVDC-resin exhibits a lower capacity than the carbon from PVDF due to the small micropores. In the alkaline electrolyte (6 M KOH), the highest specific capacitance and rate capability were obtained among the three electrolytes for both electrodes based on the facile adsorption of the constituent electrolyte ions (K+, OH-).

Study on Physical Properties of Polyvinylidene fluoride Paint Coated Steel by Thermal Treatment Condition under Continuous Mass Production (P.V.D.F 페인트 도장강판의 연속공정하의 열처리 조건에 따른 물성 변화 연구)

  • Jeong, Min-Yeong;Kim, Yong-Hui;Lee, Bo-Ryong;Mun, Man-Bin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.187-187
    • /
    • 2015
  • Polyvinylidene fluoride (PVDF) 코팅은 뛰어난 내후성으로 인해 Pre-painted metal에 많이 응용되며 주로 고가의 건축물 외장재에 적용되고 있는데, 수지의 열가소성 특성으로 인해 도막경화시 Baking 온도 및 냉각속도가 도막의 결정화도에 영향을 주어 가공특성이 상이하게 변함을 확인 하였다.

  • PDF

Superhydrophilic Surface Modification of Polyvinylidene Fluoride by Low Energy and High Flux ion Beam Irradiation (저에너지 고출력 이온빔을 이용한 polyvinylidene fluoride 표면의 초친수성화)

  • Park Jong-Yong;Jung Yeon-Sik;Choi Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.382-387
    • /
    • 2005
  • Polyvinylidene fluoride (PVDF) surface was irradiated and became superhydrophilic by low energy (180 eV) and high flux $(\~10^{15}/cm{\cdot}s)$ ion beam. As an ion source, a closed electron Hall drift thruster of $\phi=70mm$ outer channel size without grid was adopted. Ar, $O_2$ and $N_2O$ were used for source gases. When $N_2O^+$ and $O_2^+$ reactive gas ion beam were irradiated with the ion fluence of $5\times10^{15}/cm^2$, the wetting angle for deionized water was drastically dropped from $61^{\circ}\;to\;4^{\circ}\;and\;2^{\circ}$, respectively. Surface energy was also increased up to from 44 mN/m to 81 mN/m. Change of chemical component in PVDF surface was analyzed by x-ray photoelectron spectroscopy. Such a great increase of the surface energy was intimately related with the increase of hydrophilic group component in reactive ion irradiated PVDF surfaces. By using an atomic force microscopy, the root-mean-square of surface roughness of ion irradiated PVDF was not much altered compared to that of pristine PVDF.

Preparation of the Multilayer Membrane Using the Phase Separated and Pressurization (PSP) Method (가압식 코팅법을 이용한 다층막 제조)

  • Jeon, Yi Seul;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.391-397
    • /
    • 2015
  • The porous support polyvinylidene fluoride (PVDF) with a salting out based on the hollow fiber membrane polyethyleneimine (PEI) and polyvinylsulfonic acid (PVSA) by coating with by phase separated and pressurization (PSP) method to produce a multilayer membrane. The resulting membranes were characterized under the various conditions, such as the heat treatment temperature, coating concentration, feed concentration, cross-linking time and cross-link agent concentration in terms of flux and rejection rate for NaCl 100 ppm solution at 4 atm. The best results were PEI 20,000 ppm and PVSA 1,000 ppm, PEI 15% with a 2% malic acid aqueous solution coated by PSP method the hollow fiber membrane heat-treated for 1 minute showed flux 24.3 LMH, the rejection of 82.1%.

A study on the manufacture and dielectric of the polyvinylidene fluoride thin films through vapor deposition method (진공증착법을 이용한 PVDF박막의 제작과 유전 특성에 관한 연구)

  • Park, S.H.;Im, U.C.;Cho, K.S.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.420-422
    • /
    • 1995
  • PVDF (polyvinylidene fluoride) has at least from known crystalline structure ( ; they are referred to as the $\alpha$, $\beta$, $\gamma$ and $\alpha_p$ phase or forms II, I, III and $IV_p$). In this study, the manufactured PVDF thin films through vapor deposition method had for II ( ; the substrate temperature at 30$^{\circ}C$). The dielectric behavior of poly(vinylidene fluoride) is affected by orientation and crystal modification. The very high value of the dielectric constant for high temperature conditioned film is believed to be due to the orientation effect. The loss peak caused by molecular motion of the molecules in crystalline regions.

  • PDF

Structural Changes of Polyvinylidene fluoride with $^{60}Co$ $\gamma-ray$ Irradiation (Polyvinylidene fluoride의 $^{60}Co$감마선 조사에 의한 구조 변화)

  • Lee Chung;Kim Ki-Yup;Ryu Boo-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.26-31
    • /
    • 2004
  • The radiation-induced changes taking place in poly(vinylidene fluoride) (PVDF) exposed to $^{60}Co$ $\gamma-ray$ irradiation were investigated in correlation with the applied doses. Samples were irradiated in air at room temperature by $^{60}Co$ $\gamma-ray$ to doses in the range of 200 to 1000kGy. Various properties of the irradiated PVDF were studied using FTIR, differential scanning calorimetry (DSC), gel fraction and elongation. $^{60}Co\gamma-ray$ irradiation was found to induce changes in chemical, thermal, mechanical and structural properties of PVDF and such changes vary depending on the radiation dose.