• Title/Summary/Keyword: poor scattering

Search Result 42, Processing Time 0.028 seconds

The Characteristics of Visibility Measured by Forward Scattering Meter on Summertime in Pusan (Forward Scattering Meter 측정에 의한 부산의 하계 시정 특성)

  • 김유근
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.385-388
    • /
    • 2000
  • Visibility reduction is a barometer of air pollution which people can notice easily. First of all we need to measure quantified visibility continuously in order to examine visibility reduction. Prevailing visibility is not practical to measure visibility depending on observer's expertness. Scattering visibility using Forward Scattering Meter(Belfort Visibility Sensor 6230) has been measured at Kwangan-Dong in Pusan and analysed since July 1998. According to the analysis the correlation coefficient(R) between prevailing visibility and scattering visibility was 0.7235. The visibility appeared that each frequency of poor visibility(under 6km) and good visibility(over 25km) was 10.6%, 9.7% on summertime in Pusan and the visibility range from 10km to 20km ranked high frequency as a half of whole ranges. The order of correlation coefficients between visibility an air pollutants are ranking CO. PM10 and NO2 that values are 0.5878, 0.5369,l 0.5284 respectively. In meteorolgical factor the case of poor visibility presented more weakly wind speed and higher relative humidity than the case of good visibility. The correlation coefficient between calculated visibility of multiple linear regression model and observed visibility was 0.7215. But the trend of calculated and observed visibility variation was similar with the exception of several good visibility cases.

  • PDF

Hybrid Scheduling in Millimeter Wave Full-Duplex Systems (밀리미터파 전 이중 시스템에서의 혼성 스케줄링)

  • Mai, Vien V.;Kim, Juyeop;Choi, Sang Won;Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.52-57
    • /
    • 2016
  • We introduce a hybrid scheduling in a multi-path poor scattering full-duplex (FD) system, which consists of one multi-antenna FD base station and a large number of single-antenna half-duplex mobile stations. Our hybrid scheduling utilizes partial channel state information at the transmitter. In particular, unlike the conventional scheduling method using opportunistic transmission for both uplink and downlink, the proposed scheme combines a random transmit beamforming for downlink and a zero forcing beamforming for uplink. As our main result, via computer simulations, it is shown that the proposed scheme has a superior sum-rate performance than that of the conventional scheduling method beyond a certain signal-to-noise ratio regime.

Performance Improvement for 2-D Scattering Center Extraction and ISAR Image Formation for a Target in Radar Target Recognition (레이다 표적 인식에서 표적에 대한 2차원 산란점 추출 및 ISAR 영상 형성에 대한 성능 개선)

  • Shin, Seung-Yong;Lim, Ho;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.984-996
    • /
    • 2007
  • This paper presents techniques of 2-D scattering center extraction and 2-B ISAR(Inverse SAR) image formation for scattering wave which is scattered by a target. In general, 2-D IFFT is widely used to obtain 2-D scattering center and ISAR image of targets. But, this method has drawbacks, that is poor in a resolution aspect. To overcome these shortcomings with the FT(Fourier Transform)-based method, various techniques of high resolution signal processing were developed. In this paper, algorithms of 2-D scattering center extraction and ISAR image formation such as 2-D MEMP(Matrix Enhancement and Matrix Pencil), 2-D ESPRIT(Estimation of Signal Parameter via Rotational Invariance Techniques) are described. In order to show the performances of each algorithm, we use scattering wave of the ideal point scatterers and F-18 aircraft to estimate 2-D scattering center and abtain 2-D ISAR image.

Investigation of Phase Singularity Problem in Microwave Breast Tomography

  • Son, Seong-Ho;Simonov, Nikolai;Lee, Kwang-Jae;Jeon, Soon-Ik
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.332-335
    • /
    • 2014
  • This paper investigates the phase singularity problem in microwave image reconstruction utilizing unwrapped phase data. The measured phases of the electric fields in most microwave measurement systems are wrapped. Thus, a certain phase unwrapping process is necessary for reconstruction of the image of a high contrast object. This unwrapping, however, is difficult in the presence of scattering nulls on/near the unwrapping path. At the null point, the phase value will be rendered, resulting in a poor image reconstruction. In this paper, we investigate the phase singularity arising from electromagnetic scattering nulls in microwave breast tomographic imaging. We then propose a transformation technique for the measured electric fields that avoids phase singularity.

Investigation of Soot Formation in a D.I. Diesel Engine by Using Laser Induced Scattering and Laser Induced Incandescence

  • Lee, Ki-Hyung;Chung, Jae-Woo;Kim, Byung-Soo;Kim, Sang-Kwon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1169-1176
    • /
    • 2004
  • Soot has a great effect on the formation of PM (Particulate Matter) in D.I. (Direct Injection) Diesel engines. Soot in diesel flame is formed by incomplete combustion when the fuel atomization and mixture formation were poor. Therefore, the understanding of soot formation in a D.I. diesel engine is mandatory to reduce PM in exhaust gas. To investigate soot formation in diesel combustion, various measurements have been performed with laser diagnostics. In this study, the relative soot diameter and the relative number density in a DJ. engine was measured by using LIS (Laser Induced Scattering) and LII (Laser Induced Incandescence) methods simultaneously which are planar imaging techniques. And a visualization D.I. diesel engine was used to introduce a laser beam into the combustion chamber and investigate the diffusion flame characteristics. To find the optimal condition that reduces soot formation in diesel combustion, various injection timing and the swirl flow in the cylinder using the SCV (Swirl Control Valve) were applied. From this experiment, the effects of injection timing and swirl on soot formation were established. Effective reduction of soot formation is possible through the control of these two factors.

The Analyses of Causes of Visibility Impairment in Pusan (부산지역 시정악화의 원인 분석)

  • Kim Yoo-Keun;Moon Yun-Seob;Bae Joo-Hyun;Kwak Jin
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.639-643
    • /
    • 1999
  • After analyzing the correlation between air pollution and visibility, TSP and $NO_2$ is responsible for poor visibility in Pusan. After analyzing the correlation between meteorological factors and visibility, general pattern of humidity has clear negative correlation. The variation of wind speed has a positive correlation. In order to investigate the cause of poor visibility in Pusan area, the Andersen sampler and PM-2.5 are used to collect and analyze aerosol. This study was carried out to monitor the visibility using Forward scattering meter and to find out the characteristics and the cause of good visibility case and poor visibility case by measuring and analyzing a variety of parameters, such as particle size distributions, chemical compositions, and meteorological conditions in Pusan. According to the analysis of intensive sampling, $NO_3^-,NH_4^+$ ion concentration increased together with the mass concentration around $0.5\~2.5{\mu}m$ approximately during the case of poor visibility. $NH_4NO_3,\;NH_4Cl,\;and\;NaCl$ were thought to be the major components of fine particles.

  • PDF

Deep learning-based de-fogging method using fog features to solve the domain shift problem (Domain Shift 문제를 해결하기 위해 안개 특징을 이용한 딥러닝 기반 안개 제거 방법)

  • Sim, Hwi Bo;Kang, Bong Soon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1319-1325
    • /
    • 2021
  • It is important to remove fog for accurate object recognition and detection during preprocessing because images taken in foggy adverse weather suffer from poor quality of images due to scattering and absorption of light, resulting in poor performance of various vision-based applications. This paper proposes an end-to-end deep learning-based single image de-fogging method using U-Net architecture. The loss function used in the algorithm is a loss function based on Mahalanobis distance with fog features, which solves the problem of domain shifts, and demonstrates superior performance by comparing qualitative and quantitative numerical evaluations with conventional methods. We also design it to generate fog through the VGG19 loss function and use it as the next training dataset.

Impact of Lyman alpha pressure on metal-poor dwarf galaxies

  • Kimm, Taysun;Haehnelt, Martin;Blaizot, Jeremy;Katz, Harley;Michel-Dansac, Leo;Garel, Thibault;Rosdahl, Joakim;Teyssier, Romain
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2018
  • Understanding the origin of strong galactic outflows and the suppression of star formation in dwarf galaxies is a key problem in galaxy formation. Using a set of radiation-hydrodynamic simulations of an isolated dwarf galaxy, we show that the momentum transferred from resonantly scattered Lyman-alpha(LyA) photons can suppress star formation by a factor of two in metal-poor galaxies by regulating the dynamics of star-forming clouds before the onset of supernova explosions (SNe). This is possible because each LyA photon resonantly scatters and imparts ~10-300 times greater momentum than in the single scattering limit. Consequently, the number of star clusters predicted in the simulations is reduced by a factor of ~5, compared to the model without the early feedback. More importantly, we find that galactic outflows become weaker in the presence of strong LyA radiation feedback, as star formation and associated SNe become less bursty. We also examine a model in which radiation field is arbitrarily enhanced by a factor of up to 10, and reach the same conclusion. The typical mass-loading factors in our metal-poor dwarf system are estimated to be ~5-10 near the mid-plane, while it is reduced to ~1 at larger radii.

  • PDF

Analysis of Optical Properties with Photopolymers for Holographic Application

  • Kim Nam;Hwang Eun-Seop;Shin Chang-Won
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Optical transparency and high diffraction efficiency are two essential factors for high performance of the photopolymer. Optical transparency mainly depends on the miscibility between polymer binder and photopolymerized polymer, while diffraction efficiency depends on the refractive index modulation between polymer binder and photopolymerized polymer. For most of organic materials, the large refractive index difference between two polymers accompanies large structural difference that leads to the poor miscibility and thus poor optical quality via light scattering. Therefore, it is difficult to design a high-performance photopolymer satisfying both requirements. In this work, first, we prepared a new phase-stable photopolymer (PMMA) with large refractive index modulation and investigated the optical properties. Our photopolymer is based on modified poly (methyl methacrylate) as a polymer binder, acryl amide as a photopolymerizable monomer, triethanolamine as initiator, and yellow eosin as a photosensitizer at 532 nm. Diffraction efficiency over 85% and optical transmittance over 90% were obtained for the photopolymer. Second, Organic-inorganic nanocomposite films were prepared by dispersing an aromatic methacrylic monomer and a photo- initiator in organic-inorganic hybrid sol-gel matrices. The film properties could be controlled by optimizing the content of an organically modified silica precursor (TSPEG) in the sol-gel matrices. The photopolymer film modified with the organic chain (TSPEG) showed high diffraction efficiency (> 90%) under an optimized condition. High diffraction efficiency could be ascribed to the fast diffusion and efficient polymerization of monomers under interference light to generate refractive index modulation. The TSPEG modified photopolymer film could be successfully used for holographic memory.

Light Scattering Properties of Highly Textured Ag/Al:Si Bilayer Back Reflectors (표면텍스처링된 이중구조 Ag/Al:Si 후면반사막의 광산란 특성)

  • Jang, Eun-Seok;Baek, Sang-Hun;Jang, Byung-Yeol;Park, Sang-Hyun;Yoon, Kyung-Hoon;Rhee, Young-Woo;Cho, Jun-Sik
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.573-579
    • /
    • 2011
  • Highly textured Ag, Al and Al:Si back reflectors for flexible n-i-p silicon thin-film solar cells were prepared on 100-${\mu}m$-thick stainless steel substrates by DC magnetron sputtering and the influence of their surface textures on the light-scattering properties were investigated. The surface texture of the metal back reflectors was influenced by the increased grain size and by the bimodal distribution that arose due to the abnormal grain growth at elevated deposition temperatures. This can be explained by the structure zone model (SZM). With an increase in the deposition temperatures from room temperature to $500^{\circ}C$, the surface roughness of the Al:Si films increased from 11 nm to 95 nm, whereas that of the pure Ag films increased from 6 nm to 47 nm at the same deposition temperature. Although Al:Si back reflectors with larger surface feature dimensions than pure Ag can be fabricated at lower deposition temperatures due to the lower melting point and the Si impurity drag effect, they show poor total and diffuse reflectance, resulting from the low reflectivity and reflection loss on the textured surface. For a further improvement of the light-trapping efficiency in solar cells, a new type of back reflector consisting of Ag/Al:Si bilayer is suggested. The surface morphology and reflectance of this reflector are closely dependent on the Al:Si bottom layer and the Ag top layer. The relationship between the surface topography and the light-scattering properties of the bilayer back reflectors is also reported in this paper.