• Title/Summary/Keyword: porcine embryo

Search Result 379, Processing Time 0.024 seconds

Chromosome Aberrations in Porcine Embryo Produced by Nuclear Transfer with Somatic Cell

  • Ah, Ko-Seung;Jin, Song-Sang;Tae, Do-Jeong;Chung, Kil-Saeng;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.73-73
    • /
    • 2002
  • Nuclear transfer (NT) techniques have advanced in the last years, and cloned animals have been produced by using somatic cells in several species including pig. However, it is difficult that the nuclear transfer porcine embryos development to blastocyst stage overcoming the cell block in vitro. Abnormal segregation of chromosomes in nuclear transferred embryos on genome activation stage bring about embryo degeneration, abnormal blastocyst, delayed and low embryo development. Thus, we are evaluated that the correlations of the frequency of embryo developmental rates and chromosome aberration in NT and In viかo fertilization (IVF) derived embryo. We are used for ear-skin-fibroblast cell in NT. If only karyotyping of embryonic cells are chromosomally abnormal, they may difficultly remain undetected. Then, we evaluate the chromosome aberrations, fluorescent in situ hybridization (FISH) with porcine chromosome 1 submetacentric specific DNA probe were excuted. In normal diploid cell nucleus, two hybridization signal was detected. In contrast, abnormal cell figured one or three over signals. The developmental rates of NT and IVF embryos were 55% vs 63%, 32% vs 33% and 13% vs 17% in 2 cell, 8 cell and blastocyst, respectively. When looking at the types of chromosome aberration, the detection of aneuploidy at Day 3 on the embryo culture. The percentage of chromosome aneuploidy of NT and IVF at 4-cell stage 40.0%, 31.3%, respectively. This result indicate that chromosomal abnormalities are associated with low developmental rate in porcine NT embryo. It is also suggest that abnormal porcine embryos produced by NT associated with lower implantation rate, increase abortion rate and production of abnormal fetuses.

  • PDF

Recent Development in Embryo Technology in Pigs - Review -

  • Niwa, K.;Funahashi, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.966-975
    • /
    • 1999
  • Technologies on preimplantation porcine embryos have been developed quickly and significantly. Successful development of systems for culture of porcine zygotes to the blastocyst stage has made it possible to utilize follicular oocytes for in vitro production of embryos and thus stimulated research on various embryo technologies. Recent technological development of embryo cryopreservation, separation of X- and Y-bearing spermatozoa and non-surgical embryo transfer has also made it easy to utilize in vivo- and in vitro-produced embryos for artificial manipulation to produce clones and transgenic pigs. Further progress in overcoming various problems associated with each embryo technology will result in acceptable efficiency to utilize porcine embryos with a high or increased quality. Combining these technologies will accelerate further expansion of the swine industry not only for meat production but also for the production of therapeutic recombinant proteins and xonografts.

M-RAS Regulate CDH1 Function in Blastomere Compaction during Porcine Embryonic Development

  • Zhou, Dongjie;Niu, Yingjie;Cui, Xiang-Shun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.12-20
    • /
    • 2020
  • Cell adhesion plays an important role in the differentiation of the morphogenesis and the trophectoderm epithelium of the blastocyst. In the porcine embryo, CDH1 mediated adhesion initiates at compaction before blastocyst formation, regulated post-translationally via protein kinase C and other signaling molecules. Here we focus on muscle RAS oncogene homolog (M-RAS), which is the closest relative to the RAS related proteins and shares most regulatory and effector interactions. To characterize the effects of M-RAS on embryo compaction, we used gain- and loss-of-function strategies in porcine embryos, in which M-RAS gene structure and protein sequence are conserved. We showed that knockdown of M-RAS in zygotes reduced embryo development abilities and CDH1 expression. Moreover, the phosphorylation of ERK was also decreased in M-RAS KD embryos. Overexpression of M-RAS allows M-RAS KD embryos to rescue the embryo compaction and blastocyst formation. Collectively, these results highlight novel conserved and multiple effects of M-RAS during porcine embryo development.

Study on Embryo Transfer System for Production of Transgenic Pigs

  • Na, Seungwon;Lee, Euncheol;Kim, Ghangyong;Min, Kyuhong;Yu, Youngkwang;Roy, Pantu Kumar;Fang, Xun;Hassan, Bahia Mohamed Salih;Yoon, Kiyoung;Shin, Sangtae;Cho, Jongki
    • Journal of Embryo Transfer
    • /
    • v.30 no.4
    • /
    • pp.345-350
    • /
    • 2015
  • In the last 10 years, porcine somatic cell nuclear transfer to generate transgenic pig has been performed tremendous development with introduction and knockout of many genes. However, efficiency of porcine somatic cell nuclear transfer is still low and embryo transfer (ET) is one of important step for production efficiency. In porcine ET for production of transgenic cloned pig, we can consider many of points to increase production rates. In respect of seasonality and weather, porcine ET usually is not performed in summer and winter. Cloned transgenic embryos must be transferred into reproductive tracts of recipients where embryos are located after natural fertilization with similar estrous cycle. If cloned embryos with 2~4 cell stage are transferred, they must be transferred into oviducts in periovulatory stage. Number and deposition sites of transferred cloned embryos are important. And we must compare the methods of ET between surgical and non-surgical ones in respect of production efficiency. Sow recipients after natural estrus is most preferred recipients however its cost is must be considered. Here we will review many of current studies about porcine embryo transfer to increase production efficiency of transgenic pigs and strategies for further studies.

Effects of High Dose Lysophosphatidic Acid Supplement during IVC on Preimplantation Development of Porcine Embryos

  • Jin, Minghui;Yu, Il-Jeoung;Jeon, Yubyeol
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.275-285
    • /
    • 2017
  • Lysophosphatidic acid (LPA) is an important signaling molecule. Here, the effect and mechanism of LPA on the preimplantation development of porcine embryos during in vitro culture (IVC) was examined. Porcine embryos were cultured in porcine zygote medium (PZM-3) supplemented with $30{\mu}M$ LPA during different days. There was a significantly higher cleavage rate in Day 1-7 and significantly higher total cell number of blastocysts in Day 1-3 and Day 4-7. It was also found that messenger RNA (mRNA) expression level of PCNA, BCL2 and BAX in blastocysts obtained from D1-7 group were significantly higher and BCL2/BAX mRNA ratio in D1-3 group was significantly lower than control group but Day 4-7 and Day 1-7 groups were comparable with control group. Treatment with $20{\mu}M$ PLC inhibitor significantly decreased the embryo cleavage rate and blastocyst formation rate. Moreover, LPA as an activator of PLCs, enhanced the $30{\mu}M$ LPA + $20{\mu}M$ U73122 group embryo cleavage rate which similar with control group. In conclusion, the results suggest that treatment with LPA during IVC improves the porcine early embryo cleavage by activation of PLC signaling pathway and regulate the mRNA expression that contribute to total cell number of blastocysts during blastocyst formation.

In Vitro Production of Porcine Embryos

  • Nagai, T.;Kikuchi, K.
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.8-17
    • /
    • 2002
  • There have been intensive attempts to establish reliable methods far in vitro production (IVP) methods for of porcine embryos. Although a great deal of progress has been made, our current IVP systems still need to be improved. In this review, we focused on studies about in vitro maturation and fertilization (IVM-IVF) of porcine oocytes and their in vitro culture (IVC), especially on an excellent piglets production system using modified IVP system producing porcine blastocysts with high Quality.

  • PDF

Follistatins have potential functional role in Porcine Embryogenesis

  • Kim, Dong-Hee;Chun, Ju Lan;Lee, Ji Hye;Kim, Keun Jung;Kim, Eun Young;Lee, Bo Myeong;Zhuang, Lili;Kim, Min Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.52-60
    • /
    • 2016
  • In animal reproduction, the quality of oocytes and embryos has been evaluated by the expression of specific molecules. Follistatin (FST), which was isolated from follicular fluid, binds and bio-neutralizes the TGF-${\beta}$ superfamily members. Previous studies using the bovine model showed FST could be an important molecular determinant of embryo developmental competence. However, the effect of FST treatment on porcine embryo developmental competence has not been established. In this study, the effect of exogenous FST on porcine embryo developmental competence was investigated during in vitro culture. FST (10 ng/ml) treatment induced a significant decrease in the rate of cell arrest at the 4-cell stage. The expression levels of DNA-methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), and histone deacetylase 2 (HDAC2) were decreased in 4-cell stage embryos. FST treatment also resulted in significant improvements in developmental competence of embryos in terms of blastocyst formation rate and OCT-4 mRNA levels, the latter being related to pluripotency. In conclusion, during in vitro culture, FST treatment significantly ameliorated 4-cell block during embryonic development and improved embryo developmental competence. Therefore, FST treatment may potentially have a functional role in porcine embryogenesis that is broadly applicable to enhance in vitro embryo development.

Effect of Kinetin on In Vitro Development of Parthenogenetic Porcine Oocytes Exposed to Demecolcine Prior to Activation

  • Kim, Ki-Young;Park, Sang-Kyu;Roh, Sang-Ho
    • Journal of Embryo Transfer
    • /
    • v.24 no.2
    • /
    • pp.105-108
    • /
    • 2009
  • This study was designed to investigate the effect of kinetin on in vitro development of parthenogenetic porcine oocytes exposed to demecolcine prior to activation. In vitro matured metaphase II stage oocytes were incubated in 0 or 2 ${\mu}$g/ml demecolcine supplemented defined culture medium for 3 h and the oocytes were activated electrically. The parthenogenetic porcine embryos were then cultured in 0 or 200 ${\mu}$M kinetin supplemented defined culture medium for 7 days. Regardless of demecolcine treatment, kinetin supplementation increased blastocyst rates significantly (7.0% versus 12.1% and 4.9% versus 8.5%; Control versus Kinetin and Demecolcine versus Kinetin + Demecolcine, respectively, p<0.05). Demecolcine treatment before activation tended to decrease blastocyst rates regardless of kinetin supplementation although it is not statistically significant. Total cell numbers in the blastocysts also tended to be elevated in embryos when supplemented with kinetin, however only the result between Kinetin and Demecolcine groups is statistically significant (37.6 ${\times}$ 7.2 versus 28.1 ${\times}$ 9.5, respectively, p<0.05). In conclusion, the present report shows that kinetin enhances developmental competence of parthenogenetic porcine embryo regardless of demecolcine pre-treatment before parthenogenetic activation when they were developed in defined culture condition.

Effect of Co-culture with Porcine Endometrial Cell Monolayers on the Development of In Vitro Produced Porcine Zygotes (자궁내막세포막의 공배양이 돼지 체외수정란의 초기발달에 미치는 영향)

  • 한만희;박병권;박창식;이규승
    • Journal of Embryo Transfer
    • /
    • v.11 no.3
    • /
    • pp.217-223
    • /
    • 1996
  • This study was conducted to investigate the effects of co-culture for the development rate to morula /blastocyst stages of early porcine embryos, derived from oocytes matured and fertilized in vitro, with porcine endometrial cell monolayers(PEM) in the two different media, respectively. The rates of embryos developed to 2-, 4-, 8~16-cell and morula /blastocyst stage were 49.6, 40.5, 28.2 and 15.3% in Ham's F-10 with PEM, and 55.3, 45.9, 32.7, and 17.6% in TCM-HEPES with PEM, respectively. The above development rates to morula /blastocyst stages were significantly higher than those of the embryos cultured in the Ham's F-10 and TGM-HEPES without PEM(P<0.05). The in vitro development rates to the morula /blastocyst stage of 1-cell embryos cultured in Ham's F-10 and TCM-HEPES without PEM were 0~1.2%. Especially, most of embryos were observed to arrest the development beyond 4-cell stages. As shown in the above results, the co-culture of in vitro produced porcine embryos with PEM in the two different media enhanced the development of fertilized eggs to morula /blastocyst stages in vitro. However, we didn't find out any differences for the in vitro development to morula /blastocyst stages between Ham's F-10 and TcM-HEPES media.

  • PDF