• Title/Summary/Keyword: post-punching

Search Result 18, Processing Time 0.025 seconds

Progressive collapse resistance of flat slabs: modeling post-punching behavior

  • Mirzaeia, Yaser;Sasani, Mehrdad
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.351-375
    • /
    • 2013
  • Post-punching resistance of a flat slab can help redistribute the gravity loads and resist progressive collapse of a structure following initial damage. One important difficulty with accounting for the post-punching strength of a slab is the discontinuity that develops following punching shear. A numerical simulation technique is proposed here to model and evaluate post-punching resistance of flat slabs. It is demonstrated that the simulation results of punching shear and post-punching response of the model of a slab on a single column are in good agreement with corresponding experimental data. It is also shown that progressive collapse due to a column removal (explosion) can lead to punching failure over an adjacent column. Such failure can propagate throughout the structure leading to the progressive collapse of the structure. Through post-punching modeling of the slab and accounting for the associated discontinuity, it is also demonstrated that the presence of an adequate amount of integrity reinforcement can provide an alternative load path and help resist progressive collapse.

Structural Behavior of Post-Tensioned Flat Plate Slab-Column Connections (포스트 텐션 플랫 플레이트 슬래브 접합부의 거동)

  • Cho Kyung Hyun;Han Sang Whan;Lee Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.53-56
    • /
    • 2004
  • Recently, post tension flat plate slab system is widely used for a new slab structural system. Slab-column connections may fail in brittle manner by punching shear. Flat plate slabs have been widely used for gravity load resisting system in buildings. Lateral resistance usually provided by shear walls or moment resisting frames. Since plat plates move together with lateral loading system during earthquake or wind, it is important to evaluate the gravity resistance under a drift experienced by lateral force resisting system during either design earthquake or wind. Thus, this study investigated post tension flat plate slab systems whether they have sufficient strength and deformability to resist gravity loads during specified drift levels. Experimental research was carried out.

  • PDF

Alternatives to Enhance Flat Slab Ductility

  • Husain, Mohamed;Eisa, Ahmed S.;Roshdy, Ramy
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.161-169
    • /
    • 2017
  • Flat slab systems are vastly used in multi-story buildings because of their savings in story height and construction time, as well as for their flexibility in architectural remodeling. However, they frequently suffer brittle punching-shear failure around columns, especially when subjected to lateral loads. Therefore, seismic codes labeled flat slabs as non-ductile systems. This research goal is investigating some construction alternatives to enhance flat slab ductility and deformability. The alternatives are: adding different types of punching-shear reinforcement, using discreet fibers in concrete mixes, and increasing thickness of slab around columns. The experimental study included preparation and testing of seven half-scale interior slab-column connections up to failure. The first specimen is considered a reference, the second two specimens made of concrete mixes with different volumetric ratios of polymer fibers. Another three specimens reinforced with different types of punching-shear reinforcement, and the last specimen constructed with drop panel of inverted pyramidal shape. It is found that using the inverted pyramid-shape drop panel of specimen, increases the punching-shear capacity, and the initial and the post-cracking stiffnesses. The initial elastic stiffnesses are different for all specimens especially for the slab with closed stirrups where it is experienced the highest initial stiffness compared to the reference slab.

Study on the Utilization of Steel Fiber Reinforced Concrete for Efficient Structural Behavior in Slab System (슬래브의 효율적인 구조 거동을 위한 강섬유보강 콘크리트의 부분적 활용에 관한 실험적 연구)

  • 윤영수;데니스미첼;최응규;박성균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.469-474
    • /
    • 1998
  • To overcome the common deficiencies found in two-way slabs, such as excessive cracking around columns, excessive deflections and low punching shear strength, it was proposed to investigate the strategic use of steel fiber-reinforced concrete. Providing fiber-reinforced concrete results in an increase in the punching shear resistance, a significant increase in the ductility, greater post-cracking stiffness and better crack control.

  • PDF

Proposed Detailing of Reinforcement to Enhance the Structural Performance in Two-way Slab System (이방향 슬래브의 구조성능 향상을 위한 배근상세의 제안)

  • ;Denis Mitchell
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.379-384
    • /
    • 1998
  • To overcome the common deficiencies found in such two-way slabs, such as excessive cracking around columns, excessive deflections and low punching shear strength, it was proposed to investigate the strategic reinforcing steel distribution detailings. Concentration of the top mat of flexural reinforcement result in a higher punching shear resistance, higher post cracking stiffness, a more uniform distribution of strains in the top bars and smaller cracks at all levels of loading.

  • PDF

The Effects of Steel Fibers on the Behavior of Slab-Column System (강섬유를 보강한 슬래브-기둥 시스템의 거동에 관한 연구)

  • 최응규;강경수;김묵한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.553-558
    • /
    • 1998
  • Two-way slab-column specimens were tested under monotonic loading increased up to punching shear failure to investigate the beneficial effects of fiber-reinforced concrete. The parameters for experiments are the placement of fibers within the immediate column region, the placement on the entire surface of the slab, and no placement of fibers. The effects of these parameters on the punching shear capacity, negative moment cracking. and stiffness of the two-way slab specimens were studied. According to the results the addition of steel fibers in the slab around the column results in a significant improvement in the performance including the increase of punching shear resistance, greater post-cracking stiffness and smaller crack width at service load levels.

  • PDF

Punching Shear Strength and Behavior of CFT Column to RC Flat Plate connections (CFT기둥-RC 무량판 접합부의 펀칭전단강도 및 거동)

  • Lee, Cheol-Ho;Kim, Jin-Won;Lee, Seung-Dong;Ahn, Jae-Kwon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.168-179
    • /
    • 2006
  • This paper summarizes full-scale test results on CFT column-to-flat plate connections subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. However, efficient details for CFT column to flat plate connections have not been proposed yet. Based on the strategies that maximize economical field construction, several connecting schemes were proposed and tested. Test results showed that the proposed connections can exhibit punching shear strength and connection stiffness exceeding those of R/C flat plate counterparts. A semi-analytical procedure is presented to model the behavior of CFT column-to-flat plate connections. The five parameters to model elastic to post-punching catenary action range are calibrated based on the limited test data of this study. The application of the proposed modeling procedure to progressive collapse prevention design is also illustrated.

  • PDF

Application of High-Performance Steels to Enhance the Punching Shear Capacity of Two-Way Slabs (2방향 슬래브의 펀칭전단성능 향상을 위한 고성능 철근의 적용)

  • Yang, Jun Mo;Shin, Hyun Oh;Lee, Joo Ha;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • Two-way slabs reinforced with high-performance steels, which have several practical advantages of a reduction of congestion in heavily reinforced members, savings in the cost of labor and repair, the higher corrosion resistance, and a reduction of construction time, were constructed and tested. The influences of the flexural reinforcement ratio, concentrating the reinforcement in the immediate column region, and using steel fiber-reinforced concrete (SFRC) in the slab on the punching shear resistance and post-cracking stiffness were investigated, and compared with the punching shear test results of the slabs reinforced with conventional steels and GFRP bars. In addition, the strain distribution of flexural reinforcements and crack control were investigated, and the effective width calculating method for the average flexural reinforcement ratio was estimated. The use of high-performance steel reinforcement increased the punching shear strength of slabs, and decreased the amount of flexural reinforcements. The concentrating the top mat of flexural reinforcement increased the post-cracking stiffness, and showed better strain distribution and crack control. In addition, the use of SFRC showed beneficial effects on the punching shear strength and crack control. It was suggest that the effective width should be changed to larger than 2 times the slab thickness from the column faces.

Generalized Analysis of RC and PT Flat Plates Using Limit State Model (한계상태모델을 이용한 철근콘크리트와 포스트텐션 무량판의 통합해석)

  • Kang, Thomas H.K.;Rha, Chang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.599-609
    • /
    • 2009
  • This paper discusses generalized modeling schemes for both reinforced concrete (RC) and post-tensioned (PT) flat plate buildings. In this modeling approach, nonlinear behavior due to slab flexure, moment and shear transfer at slab-column connections, and punching shear was included along with linear secant stiffness of each member or connection that accounts for concrete cracking. This generalized model was capable of simulating all different scenarios of slab-column connection failures such as brittle punching, flexure-shear interactive failure, and flexural failure followed by drift-induced punching. Furthermore, automatic detection of drift-induced punching shear and subsequent backbone curve modifications were realistically modelled by incorporating the limit state model, in which gravity shear versus drift capacity relations were adopted. The validation of the model was conducted using one-third scale two-story by two-bay RC and PT flat plate frames. The comparisons revealed that the model was robust and effective.

Punching Shear Behavior of High-Performance Steel Reinforced Two-Way Concrete Slabs (고성능 철근으로 보강된 2방향 콘크리트 슬래브의 펀칭전단거동)

  • Yang, Jun-Mo;Lee, Joo-Ha;Shin, Hyun-Oh;Kook, Kyung-Hun;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.75-76
    • /
    • 2010
  • Two-way slabs reinforced with high-performance steels were constructed and tested. The influences of the yield strength of flexural reinforcements, the flexural reinforcement ratio, and concentrating the reinforcement in the immediate column region on the punching shear resistance, post-cracking stiffness, strain distribution, and crack control were investigated.

  • PDF