• Title/Summary/Keyword: potential model

Search Result 6,707, Processing Time 0.045 seconds

Effect of Potential Model Pruning on Official-Sized Board in Monte-Carlo GO

  • Oshima-So, Makoto
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.54-60
    • /
    • 2021
  • Monte-Carlo GO is a computer GO program that is sufficiently competent without using knowledge expressions of IGO. Although it is computationally intensive, the computational complexity can be reduced by properly pruning the IGO game tree. Here, I achieve this by using a potential model based on the knowledge expressions of IGO. The potential model treats GO stones as potentials. A specific potential distribution on the GO board results from a unique arrangement of stones on the board. Pruning using the potential model categorizes legal moves into effective and ineffective moves in accordance with the potential threshold. Here, certain pruning strategies based on potentials and potential gradients are experimentally evaluated. For different-sized boards, including an official-sized board, the effects of pruning strategies are evaluated in terms of their robustness. I successfully demonstrate pruning using a potential model to reduce the computational complexity of GO as well as the robustness of this effect across different-sized boards.

Simulation of the cardiac depolarization based on three dimensional ventricular model. (3차원 심실모델을 이용한 심장의 탈분극 시뮬레이션)

  • Lee, K.J.;Yoon, H.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.146-149
    • /
    • 1992
  • The cardiac depolarization model using three dimensional ventricular model is simulated. To study this theme, we constructed a cardiac ventricular model and simulated the cardiac activation process using the action potential duration and the activation time. The cardiac potential model is generated by the logical combination of the elliptic equations. The action potential duration could be obtained from the fact that it is linearly distributed between model cells. The cardiac activation process was simulated by the law of "all-or-none". Based on the activation time and the action potential duration the cardiac potential at the arbitrary time after the activation of the model cell was computed. To test the validity of model, the comparison the results of model simulation with the physiological data was performed.

  • PDF

Interatomic Potential Models for Ionic Systems - An Overview (이온 결합 물질에 대한 원자간 포텐셜 모델)

  • Lee, Byeong-Joo;Lee, Kwang-Ryeol
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.425-439
    • /
    • 2011
  • A review of the development history of interatomic potential models for ionic materials was carried out paying attention to the way of future development of an interatomic potential model that can cover ionic, covalent and metallic bonding materials simultaneously. Earlier pair potential models based on fixed point charges with and without considering the electronic polarization effect were found to satisfactorily describe the fundamental physical properties of crystalline oxides (Ti oxides, $SiO_2$, for example) and their polymorphs, However, pair potential models are limited in dealing with pure elements such as Ti or Si. Another limitation of the fixed point charge model is that it cannot describe the charge variation on individual atoms depending on the local atomic environment. Those limitations lead to the development of many-body potential models(EAM or Tersoff), a charge equilibration (Qeq) model, and a combination of a many-body potential model and the Qeq model. EAM+Qeq can be applied to metal oxides, while Tersoff+Qeq can be applied to Si oxides. As a means to describe reactions between Si oxides and metallic elements, the combination of 2NN MEAM that can describe both covalent and metallic elements and the Qeq model is proposed.

Molecular Spinless Energies of the Morse Potential Energy Model

  • Jia, Chun-Sheng;Cao, Si-Yi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3425-3428
    • /
    • 2013
  • We solve the Klein-Gordon equation with the Morse empirical potential energy model. The bound state energy equation has been obtained in terms of the supersymmetric shape invariance approach. The relativistic vibrational transition frequencies for the $X^1{\sum}^+$ state of ScI molecule have been computed by using the Morse potential model. The calculated relativistic vibrational transition frequencies are in good agreement with the experimental RKR values.

An experimental research about the grounding resistance of the mesh electrode in the model of water tank (메쉬접지극의 접지저항에 관한 실증연구)

  • Kim, Ju-Chan;Choi, Jong-Gyu;Lee, Chung-Sik;Koh, Hee-Seog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.349-354
    • /
    • 2005
  • Recently, there are many equipment of electricity, electronics, and communication which need to grounding in the building. When the electric current flows into a certain grounding system in the same building, the potential rise of other grounding system is possible to be affected by its potential rise. This potential interference was affected by the surface potential, it is deeply related whit the electrode shape. In this paper, basic formula is deduced on the basis of both electrodes surface potential of grounding electrode in a source of the potential interference and groundidng electrode which receive the potential interference. Therefore the degree of potential interference as multiple groundidng electrode can be verified the simulated results by means of the simple model in advance. This is for investigating the grounding resistance of grounding electrodes, the experiment was performed with model-scale of the grounding system and the scaled model grounding system was to this experiment using a water tank of a stainless steel-hemisphere shape. since mesh electrodes have been widely in the general building, we're tried to analyze that this water tank model and it's simulation as well.

  • PDF

Analysis of the Ground Surface Potential Rise using a Hemisphere-Shaped Test Model (반구형 실험모델을 이용한 대지표면 전위상승의 분석)

  • Yoo, Jae-Duk;Cho, Yong-Seung;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.208-213
    • /
    • 2010
  • This paper deal with an analysis of the ground surface potential profiles using a hemispherical scaled-model. Because it is very difficult to draw valid conclusions concerning a general grounding problem from actual field data, scale model tests can be used to determine the ground surface potential profile around the grounding electrodes according to the configuration of grounding electrodes. In this work, a hemispherical vessel with a diameter of 1,100 [mm] was employed to simulate uniform soil and CDEGS program was employed to compare the measured and simulated results. As a result, the ground surface potential around the grounding electrode was significantly raised and the ground surface potential at the just upper point of ground electrode particularly was higher than other points. The ground surface potential of counterpoise was higher than other grounding electrodes such as mesh and grounding rods and the ground surface potential strongly depends on the frequency responses of grounding electrodes. Also the results measured with the small-sized model were in reasonably agreement with the data obtained from simulation.

A Simulation Study on Cardiac Activation Process Using the Three Dimensional Ventricular Model (3차원 심실모델을 이용한 심장의 활성화 과정에 대한 시뮬레이션 연구)

  • Lee, Kyoung-Joung;Park, Gum-Soo;Yun, Hyung-Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.97-106
    • /
    • 1992
  • The cardiac activation process uslng three dimensional ventricular model is simulated. To study this theme, we constructed a cardiac ventricular model and simulated the cardiac activation process using the action potential duration and the activation time. The cardiac ventricular model is generated by the loglcal combination of the elliptic equations. The action potential duration could be obtained from the fact that It Is linearly distributed between model cells. The cardiac activation process was simulated by the law of "all-or-none". Based on the activation time and the action potential duration the cardiac potential at the arbitrary time after the activation of the model cell was computed. To test the validity of model, the comparison of the results of model simulation with the physiological data was performed. In conclusion, this model shows the simular results which is comparable to the 1 Pal conduction of the cardlac excitation.xcitation.

  • PDF

A Real Time Automated Diagnosis Algorithm of Electrocardiogram Based-on Microcomputer (마이크로 컴퓨터를 이용한 실시간 ECG 자동진단 알고리즘)

  • 윤형로;최경훈
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.55-64
    • /
    • 1985
  • The cardiac activation process using three dimensional ventricular model is simulated.To study this theme, we constructed a cardiac ventricular model and simulated the cardiac activation process using the action potential duration and the activation time. The cardiac ventricular model is generated by the logical combination of the elliptic equations. The action potential duration could be obtained from the fact that it is linearly distributed between model cells. The cardiac activation process was simulated by the law of "all-or-none" Based on the activation time and the action potential do-ration the cardiac potential at the arbitrary time after the activation of the model cell was computed. To test the validity of model, the comparison of the results of model simulation with the physiological data was performed. In conclusion, this model shows the simular results which is comparable to the real conduction of the cardiac excitation.xcitation.

  • PDF

Application of Hypothetical Quantum Scattering Model for the Design of Novel Electroluminescence Device

  • Jang, Hyo-Weon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.807-811
    • /
    • 2002
  • We present a hypothetical quantum scattering model to propose a novel electroluminescence device. Adoping with features of solid state semiconductor LED and exciplex laser, the cathode (electrol incoming potential) and anode(electron outgoing potential) are made to correspond to two 1-dimensional resonance supporting potentials, and the light emitting part to an interaction potential in the intermediate region. When an external voltage is applied, the electron flows into the cathode having small work function. Subsequently in flows via LUMO of the " electron incoming potential" loses kinetic energy emitting a photon, then continues to flow via LUMO of the "electron outgoing potential" unlike the conventional LUMO to HOMO transitions occurring in solid state semiconductor LED. In this model, the photon frequency can be controlled by adijusting the applied voltage. The model hopefully could be realized as partially conjugated hydrocarbon chains.

A Dynamic Market Potential Model for Forecasting the Mobile Telecommunication Service Market in Korea (국내 이동전화 서비스 시장 예측을 위한 동적 포화시장모형)

  • Jun, Duk-Bin;Park, Yoon-Seo;Kim, Seon-Kyoung;Park, Myoung-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.2
    • /
    • pp.176-180
    • /
    • 2001
  • In Korea, the mobile telecommunication service market is expanding rapidly and becoming more competitive. For service providers in such a dynamic environment, it is very important to accurately forecast demand including market potential in order to work out marketing strategies. In this paper, we suggest a general approach to forecast the market potential using a multinomial logit model, which is applied to individual-level market survey data. Then we develop a dynamic market potential model that can adapt to changes in the external environment without requiring further market survey. The proposed model is applied to the mobile telecommunication service market in Korea.

  • PDF