• Title/Summary/Keyword: precipitation events

Search Result 369, Processing Time 0.027 seconds

A Stochastic Model for Precipitation Occurrence Process of Hourly Precipitation Series (시간강수계열의 강수발생과정에 대한 추계학적 모형)

  • Lee, Jae-Jun;Lee, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.109-124
    • /
    • 2002
  • This study is an effort to develop a stochastic model of precipitation series that preserves the pattern of occurrence of precipitation events throughout the year as well as several characteristics of the duration, amount, and intensity of precipitation events. In this study an event cluster model is used to describe the occurrence of precipitation events. A logarithmic negative mixture distribution is used to describe event duration and separation. The number of events within each cluster is also described by the Poisson cluster process. The duration of each event within a cluster and the separation of events within a single cluster are described by a logarithmic negative mixture distribution. The stochastic model for hourly precipitation occurrence process is fitted to historical precipitation data by estimating the model parameters. To allow for seasonal variations in the precipitation process, the model parameters are estimated separately for each month. an analysis of thirty-four years of historical and simulated hourly precipitation data for Seoul indicates that the stochastic model preserves many features of historical precipitation. The seasonal variations in number of precipitation events in each month for the historical and simulated data are also approximately identical. The marginal distributions for event characteristics for the historical and simulated data were similar. The conditional distributions for event characteristics for the historical and simulated data showed in general good agreement with each other.

Spatio-Temporal Changes in Seasonal Multi-day Cumulative Extreme Precipitation Events in the Republic of Korea (우리나라 사계절 다중일 누적 극한강수현상의 시·공간적 변화)

  • Choi, Gwangyong
    • Journal of the Korean association of regional geographers
    • /
    • v.21 no.1
    • /
    • pp.98-113
    • /
    • 2015
  • In this study, spatial and temporal patterns and changes in seasonal multi-day cumulative extreme precipitation events defined by maximum 1~5 days cumulative extreme precipitation observed at 61 weather stations in the Republic of Korea for the recent 40 years(1973~2012) are examined. It is demonstrated that the magnitude of multi-day cumulative extreme precipitation events is greatest in summer, while their sensitivity relative to the variations of seasonal total precipitation is greatest in fall. According to analyses of linear trends in the time series data, the most noticeable increases in the magnitude of multi-day cumulative extreme precipitation events are observable in summer with coherences amongst 1~5 days cumulative extreme precipitation events. In particular, the regions with significant increases include Gyeonggi province, western Gangwon province and Chungcheong province, and as the period for the accumulation of extreme precipitation increases from 1 day to 5 days, the regions with significantly-increasing trends are extended to the Sobaek mountain ridge. It is notable that at several scattered stations, the increases of 1~2 days cumulative extreme precipitation events are observed even in winter. It is also observed that most distinct increasing tendency of the ratio of these multi-day cumulative extreme precipitation to seasonal total precipitation appears in winter. These results indicate that proactive actions are needed for spatial and temporal changes in not only summer but also other seasonal multi-day cumulative extreme precipitation events in Korea.

  • PDF

Scavenging Efficiency Based on Long-Term Characteristics of Precipitation and Particulate Matters in Seoul, Korea (서울지역 장기간 강수와 미세먼지의 특성 분석에 기반한 미세먼지 세정효과)

  • Suji Han;Junshik Um
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.367-385
    • /
    • 2023
  • The variabilities of precipitation and particulate matters (i.e., PM10 and PM2.5) and the scavenging efficiency of PMs by precipitation were quantified using long-term measurements in Seoul, Korea. The 21 years (2001~2021) measurements of precipitation and PM10 mass concentrations, and the 7 years (2015~2021) of PM2.5 mass concentrations were used. Statistical analysis was performed for each period (i.e., year, season, and month) to identify the long-term variabilities of PMs and precipitation. PM10 and PM2.5 decreased annually and the decreasing rate of PM10 was greater than PM2.5. The precipitation intensity did not show notable variation, whereas the annual precipitation amount showed a decreasing trend. The summer precipitation amount contributed 61.10% to the annual precipitation amount. The scavenging efficiency by precipitation was analyzed based on precipitation events separated by 2-hour time intervals between hourly precipitation data for 7 years. The scavenging efficiencies of PM10 and PM2.5 were quantified as a function of precipitation characteristics (i.e., precipitation intensity, amount, and duration). The calculated average scavenging efficiency of PM10 (PM2.5) was 39.59% (35.51%). PM10 and PM2.5 were not always simultaneously scavenged due to precipitation events. Precipitation events that simultaneously scavenged PM10 and PM2.5 contributed 42.24% of all events, with average scavenging efficiency of 42.93% and 43.39%. The precipitation characteristics (i.e., precipitation intensity, precipitation amount, and precipitation duration) quantified in these events were 2.42 mm hr-1, 15.44 mm, and 5.51 hours. This result corresponds to 145% (349%; 224%) of precipitation intensity (amount; duration) for the precipitation events that do not simultaneously scavenge PM10 and PM2.5.

Effect Analysis of Precipitation Events According to an Urbanization (도시화가 강수사상에 미치는 영향 분석)

  • Oh, Tae Suk;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.413-427
    • /
    • 2010
  • Urbanization means the sudden increment of a population and the industrialization. The hydrologic water cycle causes many changes due to urbanization. Therefore, the affects that urbanization influences on the precipitation events were analyzed. But the precipitation events are very much influenced many meteorological and climatologically indices besides the effect of an urbanization. So, an analysis was performed by using precipitation data observed in many spots of the Korean peninsula. The analysis data are annual precipitation, the duration 1 daily maximum amount of precipitation, the rainy days, and 10 mm over the rainy days, and 80 mm. seasonal precipitation and seasonal rainy days. The analytical method classified 4 clusters in which the precipitation characteristic is similar through the cluster analysis. It compared and analyzed precipitation events of the urban and rural stations. Moreover, the representative rainfall stations were selected and the urban stations and rural stations were compared. In the analyzed result, the increment of the rainy days was conspicuous over 80mm in which it can cause the heavy rainfall. By using time precipitation data, the design precipitation was calculated. Rainfall events over probability precipitation on duration and return period were analyzed. The times in which it exceeds the probability precipitation in which the urban area is used for the hydrologic structure design in comparison with the rural area more was very much exposed to increase.

Statistical Verification of Precipitation Forecasts from MM5 for Heavy Snowfall Events in Yeongdong Region (영동대설 사례에 대한 MM5 강수량 모의의 통계적 검증)

  • Lee, Jeong-Soon;Kwon, Tae-Yong;Kim, Deok-Rae
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.125-139
    • /
    • 2006
  • Precipitation forecasts from MM5 have been verified for the period 1989-2001 over Yeongdong region to show a tendency of model forecast. We select 57 events which are related with the heavy snowfall in Yeongdong region. They are classified into three precipitation types; mountain type, cold-coastal type, and warm type. The threat score (TS), the probability of detection (POD), and the false-alarm rate (FAR) are computed for categorical verification and the mean squared error (MSE) is also computed for scalar accuracy measures. In the case of POD, warm, mountain, and cold-coastal precipitation type are 0.71, 0.69, and 0.55 in turn, respectively. In aspect of quantitative verification, mountain and cold-coastal type are relatively well matched between forecasts and observations, while for warm type MM5 tends to overestimate precipitation. There are 12 events for the POD below 0.2, mountain, cold-coastal, warm type are 2, 7, 3 events, respectively. Most of their precipitation are distributed over the East Sea nearby Yeongdong region. These events are also shown when there are no or very weak easterlies in the lower troposphere. Even in the case that we use high resolution sea surface temperature (about 18 km) for the boundary condition, there are not much changes in the wind direction to compare that with low resolution sea surface temperature (about 100 km).

Analysis of Hourly Precipitation Change by Typhoon (태풍으로 인한 시간강수량의 변동성 분석)

  • Moon, Young-Il;Oh, Tae-Suk;Shin, Dong-Jun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.497-500
    • /
    • 2008
  • The typhoon is provoking huge damage attacking in Korea periodically every year. Therefore, in this study, the analysis of 24 hourly maximum precipitation change related to typhoon events achieved based on Mann-Whitney U test, T test, Modified T test, Sign test, F test, and Modified F test. At the results, the 24 hourly maximum precipitation was expose that average and standard deviation are increasing recently. Therefore, hydorlogical structures have to be prepared of extreme rainfall events by typhoons.

  • PDF

Future Extreme Temperature and Precipitation Mechanisms over the Korean Peninsula Using a Regional Climate Model Simulation

  • Lee, Hyomee;Moon, Byung-Kwon;Wie, Jieun
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.327-341
    • /
    • 2018
  • Extreme temperatures and precipitations are expected to be more frequently occurring due to the ongoing global warming over the Korean Peninsula. However, few studies have analyzed the synoptic weather patterns associated with extreme events in a warming world. Here, the atmospheric patterns related to future extreme events are first analyzed using the HadGEM3-RA regional climate model. Simulations showed that the variability of temperature and precipitation will increase in the future (2051-2100) compared to the present (1981-2005), accompanying the more frequent occurrence of extreme events. Warm advection from East China and lower latitudes, a stagnant anticyclone, and local foehn wind are responsible for the extreme temperature (daily T>$38^{\circ}C$) episodes in Korea. The extreme precipitation cases (>$500mm\;day^{-1}$) were mainly caused by mid-latitude cyclones approaching the Korean Peninsula, along with the enhanced Changma front by supplying water vapor into the East China Sea. These future synoptic-scale features are similar to those of present extreme events. Therefore, our results suggest that, in order to accurately understand future extreme events, we should consider not only the effects of anthropogenic greenhouse gases or aerosol increases, but also small-scale topographic conditions and the internal variations of climate systems.

An Evaluation of Extreme Precipitation based on Local Downpour using Empirical Simulation Technique (Empirical Simulation Technique 기법을 이용한 집중호우의 극한강우 평가)

  • Oh, Tae-Suk;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.141-153
    • /
    • 2009
  • The occurrence causes of the extreme rainfall to happen in Korea can be distinguished with the typhoons and local downpours. The typhoon events attacked irregularly to induce the heavy rainfall, and the local downpour events mean a seasonal rain front and a local rainfall. Almost every year, the typhoons and local downpours that induced a heavy precipitation be generated extreme disasters like a flooding. Consequently, in this research, There were distinguished the causes of heavy rainfall events with the typhoons and the local downpours at Korea. Also, probability precipitation was computed according to the causes of the local downpour events. An evaluation of local downpours can be used for analysis of heavy rainfall event in short period like a flash flood. The methods of calculation of probability precipitation used the parametric frequency analysis and the Empirical Simulation Technique (EST). The correlation analysis was computed between annual maximum precipitation by local downpour events and sea surface temperature, moisture index for composition of input vectors. At the results of correlation analysis, there were revealed that the relations closely between annual maximum precipitation and sea surface temperature. Also, probability precipitation using EST are bigger than probability precipitation of frequency analysis on west-middle areas in Korea. Therefore, region of west-middle in Korea should prepare the extreme precipitation by local downpour events.

Characteristics of Sensible Heat and Latent Heat Fluxes over the East Sea Related with Yeongdong Heavy Snowfall Events (영동대설 사례와 관련된 동해상의 현열속과 잠열속 분포 특성)

  • Kim, Ji-Eon;Kwon, Tae-Yong;Lee, Bang-Yong
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.237-250
    • /
    • 2005
  • To investigate the air mass modification related with Yeongdong Heavy snowfall events, we examined sensible and latent heat fluxes on the East Sea, the energy exchange between atmosphere and ocean in this study. Sensible and latent heats were calculated by a bulk aerodynamic method, in which NCEP/NCAR reanalysis data and NOAA/AVHRR weekly SST data with high resolution were used. Among winter precipitation events in the Yeongdong region, 19 heavy precipitation events $(1995{\sim}2001)$ were selected and classified into three types (mountain, cold-coastal, and warm types). Mountain-type precipitation shows highly positive anomalies of sensible and latent heats over the southwestern part of the East Set When separating them into the two components due to variability of wind and temperature/ specific Humidity, it is shown that the wind components are dominant. Cold-coastal-type precipitation also shows strong positive anomalies of sensible and latent heats over the northern part and over the central-northern part of the East Sea, respectively. It is shown that the sensible heat anomalies are caused mostly by the decrease of surface air temperature. So it can be explained that cold-coastal-type precipitation is closely related with the air mass modification due to cold air advection over warm ocean surface. But in warm-type precipitation, negative anomalies are found in the sensible and latent heat distributions. From this result, it may be postulated that warm-type precipitation is affected by the internal process of the atmosphere rather than the atmosphere-ocean interaction.

Spatial and Temporal Characteristics of Summer Extreme Precipitation Events in the Republic of Korea, 2002~2011 (우리나라 여름철 극한강수현상의 시·공간적 특성(2002~2011년))

  • Lee, Seung-Wook;Choi, Gwangyong;Kim, Baek-Jo
    • Journal of the Korean association of regional geographers
    • /
    • v.20 no.4
    • /
    • pp.393-408
    • /
    • 2014
  • In this study, the spatio-temporal characteristics of summer extreme precipitation events in the Republic of Korea are examined based on the daily precipitation data observed at approximately 360 sites of both Automatic Weather Station (AWS) and Automated Synoptic Observation System (ASOS) networks by the Korea Meteorological Administration for the recent decade(2002~2011). During the summer Changma period(late June~mid July), both the frequency of extreme precipitation events exceeding 80mm of daily precipitation and their decadal maximum values are greatest at most of weather stations. In contrast, during the Changma pause period (late July~early August), these patterns are observed only in the northern regions of Geyeonggi province and western Kangwon province as such patterns are detected around Mt. Sobaek and Mt. Halla as well as in the southern regions of Geyeonggi province and western Kangwon province during the late Changma period (mid August~early September) due to north-south oscillation of the Changma front. Investigation of their regional patterns confirms that not only migration of the Changma front but also topological components in response to the advection of moistures such as elevation and aspect of major mountain ridges are detrimental to spatio-temporal patterns of extreme precipitation events. These results indicate that each local administration needs differentiated strategies to mitigate the potential damages by extreme precipitation events due to the spatiotemporal heterogeneity of their frequency and intensity during each Changma period.

  • PDF