• Title/Summary/Keyword: pressure gradient

Search Result 844, Processing Time 0.041 seconds

Analysis of Turbulent flow using Pressure Gradient Method (압력구배기법을 이용한 난류 유동장 해석)

  • 유근종
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 1999
  • Applicability of the pressure gradient method which is formulated based on pressure gradient is verified against turbulent flow analysis. In the pressure gradient method, pressure gradient instead of pressure itself is obtained using continuity constraint. Since correct pressure gradient is found only when mass conservation is satisfied, pressure gradient method can reflect physics of flow field properly The pressure gradient method is formulated with semi-staggered grid system which locates each primitive variables on the same grid point but evaluates pressure gradient in-between. This grid system ensures easy programming and reflection of correct physics in analysis. For verifying applicability of this method, the pressure gradient method is applied to turbulent flow analysis with low Reynolds number $\kappa$-$\varepsilon$ model. Turbulent flows include fully developed channel flow, backward-facing step flow, and conical diffuser flow. Prediction results show that the pressure gradient method can be applied to turbulent flow analysis. However, the pressure gradient method requires somewhat long computation time. Proper way to find optimum under-relaxation factor, $\gamma$, is also need to be developed.

  • PDF

Effects of Combustion Atmosphere Pressure on Non-premixed Counterflow Flame (비예혼합 대향류 화염에서 연소 분위기 압력 영향 연구)

  • Lee, Kee-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.853-862
    • /
    • 2006
  • The present study is numerically investigated the flame structure of non-premixed counterflow jet flames using the laminar flamelet model Detailed flame structures with the fuel composition of 40% CO, 30% $H_2$. 30% $N_2$ and an oxidizer composition of 79% $N_2$ and 21% $O_2$ in a non-premixed counterflow flame are studied numerically. This study is aimed to investigate the effects of axial velocity gradient and combustion atmosphere pressure on flame structure. The results show that the role of axial velocity gradient on combustion processes is globally opposite to that of combustion atmosphere pressure. That is, chemical nonequilibrium effects become dominant with increasing axial velocity gradient, but are suppressed with increasing ambient pressure. Also, the flame strength is globally weakened by the increase of axial velocity gradient but is augmented by the increase of ambient pressure. However, flame extinction is described better on the basis of only chemical reaction and in this study axial velocity gradient and ambient pressure play a similar role conceptually such that the increase of axial velocity gradient and ambient pressure cause flame not to be extinguished and extend the extinction limit, respectively. Consequently it is suggested that a combustion process like flame extinction is mainly influenced by the competition between the radical formation reaction and the third-body recombination reaction.

Modification of Dissipation Rate Equation of Low Reynolds Number k-ε Model Accounting for Adverse Pressure Gradient Effect (역압력구배 영향을 고려한 저레이놀즈수 k-ε 모형의 소산율 방정식 수정)

  • Song, Kyoung;Cho, Kang Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1399-1409
    • /
    • 1999
  • It is known that previous models are unsatisfactory in predicting adverse pressure gradient turbulent flows. In the present paper, a revised low Reynolds number $k-{\varepsilon}$ model is proposed. In this model, a newly developed term is added lo the dissipation rate equation. In order to reflect appropriate effects for an adverse pressure gradient. The added tenn is derived by considering the distribution of mean velocity and turbulent properties in the turbulent flow with, adverse pressure gradient. The new $k-{\varepsilon}$ model was applied to calculations of flat plate flow with adverse pressure gradient, conical diffuser flow and backward facing step flow. It was found that the three numerical results showed better agreement than other models compared with DNS results and experimental ones.

The effects of tripping structure on the development of turbulent boundary layer subjected to adverse pressure gradient (역압력 구배가 존재하는 난류 경계층의 발달에 트리핑 구조물이 미치는 영향에 관한 연구)

  • 임태현;김대성;윤순현
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.36-44
    • /
    • 2001
  • The effects of various tripping structures on turbulent boundary layer subjected to adverse pressure gradient were examined. The profiles are compared to zero pressure gradient and adverse pressure gradient. The increases of tripping structures of height, k are affects almost flow parameter included velocity fluctuation, skin friction coefficient and turbulent boundary thickness.

  • PDF

Numerical Simulation for the Effect of Entrance Hood on Pressure of High Speed Railway Tunnel (입구후드가 고속열차 터널의 압력에 미치는 영향에 대한 수치해석 적 연구)

  • 김동현;이재범;양신추;이희성;오일근
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.406-413
    • /
    • 1999
  • A compression wave is generated by the high speed train which enters a tunnel, and it propagates along the tunnel. When the compression wave emerges from the exit of the tunnel, it causes an impulsive noise, and the strength of the impulsive noise depends on the pressure gradient of the first compression wave. So it needs to reduce the pressure gradient for the minimization of impulsive noise. The entrance hood is used for the reduction of the pressure gradient. In the present study, the pressure transients were numerically calculated for three shapes of hood, In order to validate the numerical simulation, the pressure and pressure gradient were compared with the experimental data of moving model rig. The calculation results won well agreed with the experimental data, and also showed that the hood had an effect on the pressure gradient of the tunnel inside.

  • PDF

Analysis of the air tightness for high speed train (고속전철의 기밀 거동 해석)

  • 정병철;염경안;강석택
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.220-224
    • /
    • 2002
  • As the train run through the tunnels, especially at high speed, pressure shock developed by the running train gives the influence on the pressure fluctuation inside the tunnel and consequently, inside the car. This pressure changes and pressure gradient is closely related with the tunnel section, train speed, air tightness of the train, length of the tunnel, etc. This study includes the analysis of the pressure behavior at the varied train speed and tunnel length. The results show that train speed affects the pressure gradient inside the car almost linearly, and that there exist the critical tunnel lengths that gives the maximum value of pressure change and pressure gradient, respectively.

  • PDF

Computational and Analytical Studies on the Impulse Wave Discharged from the Exit of a Pipe (관출구로부터 방출하는 펄스파에 대한 수치계산과 해석적 연구)

  • Lee, D.H.;Kim, H.S.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.432-437
    • /
    • 2001
  • A computational work of the impulse wave which is discharged from the open end of a pipe is compared to the Lighthill's aeroacoustics theory. The second-order total variation diminishing(TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compressure wave form and the resulting impulse wave is characterized in terms of the peak pressure. The overpressure, pressure gradient and wavelength of the initial compression wave are changed to investigate the influence of the initial compressure wave form on the peak pressure of impulse wave. The results obtained show that for the initial compression wave of a large wavelength and small pressure gradient the peak pressure of the impulse wave depends upon the wavelength and pressure gradient of compression wave, but for the initial compression wave of a short wavelength and large pressure gradient the peak pressure of the impulse wave is almost constant regardless of the wavelength and pressure gradient of compression wave. The peak pressure of the impulse wave is increased with an increase in the overpressure of the initial compression wave. The results from the numerical analysis are well compared to the results from the aeroacoutics theory with a good agreement.

  • PDF

A Study on the Characteristics of the Impulse Wave Discharged from the Exit of a Pipe (관출구로부터 방출하는 펄스파 특성에 관한 연구)

  • 이동훈;김희동;이명호;박종호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.48-56
    • /
    • 2002
  • A computational work of the impulse wave which is discharged from the open end of a pipe is compared to the Lighthill\`s aeroacoustics theory. The second-order total variation diminishing(TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compressure wave form and the resulting impulse wave is characterized in terms of the peak pressure. The overpressure, pressure gradient and wavelength of the initial compression wave are changed to investigate the influence of the initial compressure wave form on the peak pressure of impulse wave. The results obtained show that for the initial compression wave of a large wavelength and small pressure gradient the peak pressure of the impulse wave depends upon the wavelength and pressure gradient of compression wave, but for the initial compression wave of a short wavelength and large pressure gradient the peak pressure of the impulse wave is almost constant regardless of the wavelength and pressure gradient of compression wave. The peak pressure of the impulse wave is increased with an increase in the overpressure of the initial compression wave. The results from the numerical ana1ysis are well compared to the results from the aeroacoutics theory with a food agreement.

Unsteady Turbulent Flow with Sudden Pressure Gradient Change

  • Chung Yongmann M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.46-47
    • /
    • 2003
  • Direct numerical simulations are performed for a turbulent flow subjected to a sudden change in pressure gradient. The calculations are started from a fully-developed turbulent channel flow at $Re_{\tau}=180$. The pressure gradient of the channel flow is then changed abruptly. The responses of the turbulence quantities (e.g., turbulence intensities, Reynolds shear stress, and vorticity fluctuations) and the near-wall turbulence structure to the pressure gradient change are investigated. It is found that there are two different relaxations: a fast relaxation at the early stage and a slow one at the later stage. The early response of the velocity fluctuations shows an anisotropic response of the near-wall turbulence.

  • PDF

Prediction of Bypass Transition Flow on Surface with Changing Pressure Gradient (압력구배가 변하는 표면 위의 Bypass 천이 유동의 예측)

  • Baek-Seong-Gu;Chung, Myung-Kyoon;Lim, Hyo-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.823-832
    • /
    • 2002
  • A modified $textsc{k}$-$\varepsilon$model is proposed for calculation of transitional boundary-layer flows with changing pressure gradient. In order to develop the model for this problem, the flow is divided into three regions; pre-transition region, transition region and fully turbulent region. The effect of pressure gradient is taken into account in stream-wise intermittency factor, which bridges the eddy-viscosity models in the pre-transition region and the fully turbulent region. From intermittency data in various flows, Narashima's intermittency function, F(${\gamma}$), has been found to be proportional to $\chi$$^{n}$ according to the extent of pressure gradient. Three empirical correlations of intermittency factor being analyzed, the best one was chosen to calculate three benchmark cases of bypass transition flows with different free-stream turbulence intensity under arbitrary pressure gradient. It was found that the variations of skin friction and shape factor as well as the profiles of mean velocity in the transition region were very satisfactorily predicted.