• Title/Summary/Keyword: pressure retarded osmosis

Search Result 25, Processing Time 0.023 seconds

Intrinsic Flux Inequality in Forward Osmosis (FO) and Pressure-Retarded Osmosis (PRO) Processes (수학적 귀납법을 이용한 정삼투 및 압력지연삼투 공정의 투과율 불균형 해석)

  • Kim, Albert S.;Lee, Seung-won
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.367-372
    • /
    • 2015
  • In pressure-retarded osmosis (PRO) and forward osmosis (FO) processes, solvent (permeate) flux depends on which surface the draw solution faces. There are two operation modes. PRO mode indicates that the active layer faces the draw solution, and FO mode means that the porous substrate fronts the draw stream. It is often observed that the PRO mode produces higher flux than that of FO under the same operating conditions. The current work uses the method of proof by contradiction, and mathematically proves the intrinsic flux inequality between the two modes.

Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System (압력지연삼투(PRO) 발전 시스템에서 채널 입구 압력차의 영향에 대한 수치해석적 연구)

  • Hong, Sung Soo;Ryoo, Won;Chun, Myung-Suk;Chung, Gui Yung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.68-74
    • /
    • 2014
  • In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1~11 atm, the flow rate in the feed-channel decreased about 8~13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference.

Effect of the Temperature and Pressure on Pressure Retarded Osmosis Performance (온도와 압력 변화가 압력지연삼투 공정 성능에 미치는 영향)

  • Sim, Jin-woo;Nam, Sook-Hyun;Koo, Jae-Wuk;Kim, Eun-Ju;Yoon, Young Han;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.321-325
    • /
    • 2016
  • The Pressure Retarded Osmosis (PRO) is the next generation desalination technique and is considered as a eco-friendly energy. This was conducted to evaluate the effect of the temperature and pressure on the PRO performance. The flux of the permeation was measured under different operating conditions and estimated the power density. An improvement of PRO performance is depend on increasing solution temperature and optimum pressure. The effect of increasing feed solution temperature has stronger impact on the PRO performance comparing to the draw solution temperature. The reason of the results was due to the change of osmotic power, viscosity, water permeability and structure parameter(s).

Pressure Retarded Osmosis Process: Current Status and Future (염도차를 이용한 압력지연삼투 공정의 현황과 미래)

  • Kim, Jihye;Kim, Seung-Hyun;Kim, Joon Ha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.791-802
    • /
    • 2014
  • Energy shortage is being exacerbated due to the increase of energy consumption and depletion of fossil fuels. In order to release the energy crisis, new types of energy resources such as small hydropower, solar power, wind power and biomass have been already developed or actively researched. Recently, osmotic power, which harvests energy from salinity gradient between seawater and fresh water, is considered as a feasible candidate. Among the osmotic power processes, pressure retarded osmosis (PRO) is widely gaining attention because of no emission of carbon dioxide and less sensitivity to the external environmental conditions. However, PRO process is facing difficulties such as the lack of specialized PRO membrane and optimization technologies. Therefore, PRO was reviewed in this paper in terms of theoretical background, membrane development, process development and fouling mechanism to provide insights and suggest the future direction of PRO research.

Solid-salt pressure-retarded osmosis with exothermic dissolution energy for sustainable electricity production

  • Choi, Wook;Bae, Harim;Ingole, Pravin G.;Lee, Hyung Keun;Kwak, Sung Jo;Jeong, Nam Jo;Park, Soon-Chul;Kim, Jong Hak;Lee, Jonghwi;Park, Chul Ho
    • Membrane and Water Treatment
    • /
    • v.6 no.2
    • /
    • pp.113-126
    • /
    • 2015
  • Salinity gradient power (SGP) systems have strong potential to generate sustainable clean electricity for 24 hours. Here, we introduce a solid-salt pressure-retarded osmosis (PRO) system using crystal salt powders rather than seawater. Solid salts have advantages such as a small storage volume, controllable solubility, high Gibbs dissolution energy, and a single type of water intake, low pretreatment costs. The power densities with 3 M draw solutions were $11W/m^2$ with exothermic energy and $8.9W/m^2$ without at 35 bar using a HTI FO membrane (water permeability $A=0.375L\;m^{-2}h^{-1}bar^{-1}$). These empirical power densities are ~13% of the theoretical value.

Evolution of RO Process for Green Future (그린 미래를 향한 역삼투 공정의 진화)

  • Hong, Seungkwan;Lee, Sangho;Kim, Joon Ha;Kim, Jeong Hoon;Ju, Younggil
    • Prospectives of Industrial Chemistry
    • /
    • v.14 no.6
    • /
    • pp.9-20
    • /
    • 2011
  • 전 세계는 물 부족 문제를 해결하기 위한 대체수자원 개발에 다양한 노력을 기울이고 있으며, 그 중에 해수 담수화 기술이 가장 주목받고 있다. 특히 역삼투 방식의 해수담수화기술은 기존 증발식에 비해 에너지 소비량이 적기 때문에 매년 10% 이상의 높은 성장률을 기록하고 있다. 그러나 역삼투 방식의 해수담수화는 지표수를 이용하는 시스템에 비해 상당히 많은 에너지를 필요로 한다. 따라서 에너지 효율을 높이기 위한 다양한 공정 개발이 시도되고 있으며, 그 중에 대표적인 기술이 삼투현상을 이용한 FO (Forward Osmosis)와 PRO (Pressure Retarded Osmosis) 공정이다. 본 논문에서는 역삼투막을 이용한 해수담수화 기술의 현황과 한계를 살펴보고, 현 해수담수화공정을 보완할 기술로써 FO와 PRO 공정개발에 관한 최근 연구 동향과 이러한 신기술의 상용화에 필수적으로 요구되는 막에 대한 개발 현황을 살펴보았다.

Effect of Hydraulic Pressure on Organic Fouling in Pressure Retarded Osmosis (PRO) Process (압력지연삼투 (PRO) 공정에서 유도용액에서의 압력이 유기물 파울링에 미치는 영향)

  • Suh, Dongwoo;Yoon, Hongsik;Yoon, Jeyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.133-138
    • /
    • 2015
  • Pressure retarded osmosis (PRO) process is one of membrane processes for harvesting renewable energy by using salinity difference between feed and draw solutions. Power is generated by permeation flux multiplied by hydraulic pressure in draw side. Membrane fouling phenomena in PRO process is presumed to be less sever, but it is inevitable. Membrane fouling in PRO process decreases water permeation through membrane, resulting in significant power production decline. This study intended to investigate the effect of hydraulic pressure in PRO process on alginate induced organic fouling as high and low hydraulic pressures (6.5 bar and 12 bar) were applied for 24 h under the same initial water flux. In addition, organic fouling in draw side from the presence of foulant (sodium alginate) in draw solution was examined. As major results, hydraulic pressure was found to be not a significant factor affecting in PRO organic fouling as long as the same initial water flux is maintained, inidicating that operating PRO process with high hydraulic pressure for efficient energy harvesting will not cause severe organic fouling. In addition, flux decline was negligible from the presence of organic foulant in draw side.

Effect of Membrane Module and Feed Flow Configuration on Performance in Pressure Retarded Osmosis (압력지연삼투(PRO) 공정에서 막 모듈 배치와 유입원수의 유입 흐름방식이 성능에 미치는 영향)

  • Go, Gilhyun;Kim, Donghyun;Park, Taeshin;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.271-278
    • /
    • 2016
  • Recently, reverse osmosis (RO) is the most common process for seawater desalination. A common problem in both RO and thermal processes is the high energy requirements for seawater desalination. The one energy saving method when utilizing the osmotic power is utilizing pressure retarded osmosis (PRO) process. The PRO process can be used to operate hydro turbines for electrical power production or can be used directly to supplement the energy required for RO desalination system. This study was carried out to evaluate the performance of both single-stage PRO process and two-stage PRO process using RO concentrate for a draw solution and RO permeate for a feed solution. The major results, were found that increase of the draw and feed solution flowrate lead to increase of the production of power density and water permeate. Also, comparison between CDCF and CDDF configuration showed that the CDDF was better than CDCF for stable operation of PRO process. In addition, power density of two-stage PRO was lower than the one of single-stage. However, net power of two-stage PRO was higher than the one of single-stage PRO.

Effects of coagulation-UF pretreatment on pressure retarded osmosis membrane process (응집-UF 전처리 공정이 압력지연삼투 공정에 미치는 영향)

  • Goh, Gilhyun;Kim, Suhyun;Kim, Jungsun;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.4
    • /
    • pp.285-292
    • /
    • 2021
  • Osmotic power is to produce electric power by using the chemical potential of two flows with the difference of salinity. Water permeates through a semipermeable membrane from a low concentration feed solution to a high concentration draw solution due to osmotic pressure. In a pressure retarded osmosis (PRO) process, river water and wastewater are commonly used as low salinity feed solution, whereas seawater and brine from the SWRO plant are employed as draw solution. During the PRO process using wastewater effluent as feed solution, PRO membrane fouling is usually caused by the convective or diffusive transport of PRO which is the most critical step of PRO membrane in order to prevent membrane fouling. The main objective of this study is to assess the PRO membrane fouling reduction by pretreatment to remove organic matter using coagulation-UF membrane process. The experimental results obtained from the pretreatment test showed that the optimum ferric chloride and PAC dosage for removal of organic matter applied for the coagulation and adsorption process was 50 mg/L as FeCl3 (optimum pH 5.5). Coagulation-UF pretreatment process was higher removal efficiency of organic matter, as also resulting in the substantial improvement of water flux of PRO membrane.