• Title/Summary/Keyword: prestressing strand

Search Result 46, Processing Time 0.035 seconds

Experimental study on development length of prestressing strand in pretensioned prestressed concrete members (프리텐션 프리스트레스트 콘크리트 부재의 정착길이 평가)

  • Kim, Ui-Seong
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.49
    • /
    • pp.84-91
    • /
    • 2009
  • By bond mechanism between the prestressing strand and the concrete surrounding it, the effective force of prestressing must be transferred to the concrete entirely. The distance required to transfer the effective force of prestressing is called the transfer length, and the development length is the bond length required to anchor the strand as it resists external loads on the member. Transfer length was determined from the concrete strain profile at the level of the strands at transfer and development length was determined from various external loading lengths and compared with current code equation. Through the test results, bond failure is predicted based on the distress caused by cracks when they propagate within the transfer zone of prestressing strand. The current code equation was found to be conservative in comparison with the measured value.

  • PDF

Experimental Study on Development Length of Prestressing Strand in Pretensioned Prestressed Concrete Members (프리텐션 프리스트레스트 콘크리트 부재의 정착길이 정가)

  • Kim, Eui-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.115-121
    • /
    • 2008
  • By bond mechanism between the prestressing strand and the concrete surrounding it, the effective force of prestressing must be transferred to the concrete entirely. The distance required to transfer the effective force of prestressing is called the transfer length, and the development length is the bond length required to anchor the strand as it resists external loads on the member. Transfer length was determined from the concrete strain profile at the level of the strands at transfer and development length was determined from various external loading lengths and compared with current code equation. Through the test results, bond failure is predicted based on the distress caused by cracks when they propagate within the transfer zone of prestressing strand. The current code equation was found to be conservative in comparison with the measured value.

Bond mechanism of 18-mm prestressing strands: New insights and design applications

  • Dang, Canh N.;Marti-Vargas, Jose R.;Hale, W. Micah
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.67-81
    • /
    • 2020
  • Pretensioned concrete (PC) is widely used in contemporary construction. Bond of prestressing strand is significant for composite-action between the strand and concrete in the transfer and flexural-bond zones of PC members. This study develops a new methodology for quantifying the bond of 18-mm prestressing strand in PC members based on results of a pullout test, the Standard Test for Strand Bond (STSB). The experimental program includes: (a) twenty-four pretensioned concrete beams, using a wide range of concrete compressive strength; and (b) twelve untensioned pullout specimens. By testing beams, the transfer length, flexural-bond length, and development length were all measured. In the STSB, the pullout forces for the strands were measured. Experimental results indicate a significant relationship between the bond of prestressing strand to the code-established design parameters, such as transfer length and development length. However, the code-predictions can be unconservative for the prestressing strands having a low STSB pullout force. Three simplified bond equations are proposed for the design applications of PC members.

Pullout Bond Characteristics of Untensioned Prestressing Strand (인장을 가하지 않은 PS강연선의 인발 부착특성)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.101-108
    • /
    • 2008
  • The primary objective of this research is a study on the pullout bond characteristics of untensioned prestressing strand in concrete. The bond characteristics of untensioned prestressing strand in concrete differs from that of deformed reinforcing bar. In order to use and design untensioned prestressing strand as deformed reinforcing bar, a study for bond characteristics of the untensioned prestressing strand was progressed. Major test variables are embedment length ($10d_b{\sim}60d_b$), concrete cover (45mm, 70mm, 100m) and diameter of strands. (12.7mm : SWPC7, 9.3mm : SWPC7A) As a results, these showed that average bond stress was decreased as a growing the embedment length, and then showed that the bond performance of untensioned prestressing strand was improved if embedment length was above 60$60d_b$.

Estimation of Friction Coefficient Using Smart Strand

  • Jeon, Se-Jin;Park, Sung Yong;Kim, Sang-Hyun;Kim, Sung Tae;Park, YoungHwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.369-379
    • /
    • 2015
  • Friction in a post-tensioning system has a significant effect on the distribution of the prestressing force of tendons in prestressed concrete structures. However, attempts to derive friction coefficients using conventional electrical resistance strain gauges do not usually lead to reliable results, mainly due to the damage of sensors and lead wires during the insertion of strands into the sheath and during tensioning. In order to overcome these drawbacks of the existing measurement system, the Smart Strand was developed in this study to accurately measure the strain and prestressing force along the strand. In the Smart Strand, the core wire of a 7-wire strand is replaced with carbon fiber reinforced polymer in which the fiber Bragg grating sensors are embedded. As one of the applications of the Smart Strand, friction coefficients were evaluated using a full-scale test of a 20 m long beam. The test variables were the curvature, diameter, and filling ratio of the sheath. The analysis results showed the average wobble and curvature friction coefficients of 0.0038/m and 0.21/radian, respectively, which correspond to the middle of the range specified in ACI 318-08 in the U.S. and Structural Concrete Design Code in Korea. Also, the accuracy of the coefficients was improved by reducing the effective range specified in these codes by 27-34 %. This study shows the wide range of applicability of the developed Smart Strand system.

Long Term Monitoring of Prestressing Tension Force in Post-Tension UHPC Bridge using Fiber Optical FBG Sensor (FBG 광섬유센서가 내장된 7연 강연선을 이용한 포스트텐션 UHPC 교량의 긴장력 장기모니터링)

  • Kim, Hyun-Woo;Kim, Jae-Min;Choi, Song-Yi;Park, Sung-Yong;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.699-706
    • /
    • 2015
  • This paper presents results of one-year monitoring on prestressing force of a 7-wire steel post-tensioning strand which is installed in a UHPC(ultra high performance concrete) bridge with 11.0 m long, 5.0 m wide, and 0.6 m high by using a FBG-encapsulated 7-wire steel strand. The initial prestressing forces and the prestress changes during a vehicle load test were measured using the FBG-encapsulated strand. The results show that the FBG-encapsulated 7-wire strand is very effective for monitoring the prestress forces even the change in the tension force is very small. Additionally, it was indicated that selection of the thermal expansion coefficient which is used for the temperature correction shall be carefully carried out.

Analytical model for transfer length prediction of 13 mm prestressing strand

  • Marti-Vargas, J.R.;Arbelaez, C.A.;Serna-Ros, P.;Navarro-Gregori, J.;Pallares-Rubio, L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.211-229
    • /
    • 2007
  • An experimental investigation to determine the transfer length of a seven-wire prestressing strand in different concretes is presented in this paper. A testing technique based on the analysis of bond behaviour by means of measuring the force supported by the prestressing strand on a series of specimens with different embedment lengths has been used. An analytical bond model to calculate the transfer length from an inelastic bond stress distribution along the transfer length has been obtained. A relationship between the plastic bond stress for transfer length and the concrete compressive strength at the time of prestress transfer has been found. An equation to predict the average and both the lower bound and the upper bound values of transfer length is proposed. The experimental results have not only been compared with the theoretical prediction from proposed equations in the literature, but also with experimental results obtained by several researchers.

Strut-tie model evaluation of behavior and strength of pre-tensioned concrete deep beams

  • Yun, Young Mook
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.267-291
    • /
    • 2005
  • To date, many studies have been conducted for the analysis and design of reinforced concrete members with disturbed regions. However, prestressed concrete deep beams have not been the subject of many investigations. This paper presents an evaluation of the behavior and strength of three pre-tensioned concrete deep beams failed by shear and bond slip of prestressing strands using a nonlinear strut-tie model approach. In this approach, effective prestressing forces represented by equivalent external loads are gradually introduced along strand's transfer length in the nearest strut-tie model joints, the friction at the interface of main diagonal shear cracks is modeled by the aggregate interlock struts along the direction of the cracks in strut-tie model, and an algorithm considering the effect of bond slip of prestressing strands in the strut-tie model analysis and design of pre-tensioned concrete members is implemented. Through the strut-tie model analysis of pre-tensioned concrete deep beams, the nonlinear strut-tie model approach proved to present effective solutions for predicting the essential aspects of the behavior and strength of pre-tensioned concrete deep beams. The nonlinear strut-tie model approach is capable of predicting the strength and failure modes of pre-tensioned concrete deep beams including the anchorage failure of prestressing strands and, accordingly, can be employed in the practical and precise design of pre-tensioned concrete deep beams.

Experimental Study on the Strengthening Method of RC Beam Applied External Prestressing Using Strand or CFRP (강연선 또는 CFRP를 이용한 RC보의 외부 프리스트레싱 보강공법에 관한 실험적 연구)

  • Shim, Nak-Hoon;Park, Young-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.207-215
    • /
    • 2004
  • The objective of the present study is to understand the strengthening effects of reinforced concrete beam applied external prestressing with strand or CFRP(Carbon Fiber Reinforced Plastic). In the present study, the structural tests was performed to find the effects of stiffness and ductility for the strengthening RC beam. The experimental results show that proposed methods can increase the bending capacity such as strength, stiffness of the beam significantly and the ranged between 57% and 75% of the load-carrying capacity of the control beam.

An Experimental Study on Influence of Concrete Strength and Cover Size on Transfer Length of Prestressing Strand in Pretensioned Prestressed Concrete Members (압축강도 및 피복두께에 따른 프리텐션 부재의 전달길이 변화에 관한 연구)

  • 오병환;김동백;김의성;최영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.355-358
    • /
    • 1999
  • In recent times, large strands have become increasingly popular in the pretensioned prestressed industry and have found wide applications in varying geometries of sections. However, use of such elements and their behavior in several situations have been questioned with respect to anchoring of these strands in concrete. In addition, the experimental results available on bond are limited and information relating to large strands is rare. This study was conducted to determine the influence of some of the inadequately examined properties on transfer length of prestressing strand. The principle variables considered were strand size, concrete strength and clear bottom cover. The experimental results indicate clearly that concrete strength at transfer and cover size influence transfer length significantly. An attempt was made to suggest prediction equation for transfer length including above parameters.

  • PDF