• Title/Summary/Keyword: prevention meteorological database

Search Result 8, Processing Time 0.018 seconds

Prevention Meteorological Database Information for the Assessment of Natural Disaster (자연재해 평가를 위한 방재기상 DB 정보)

  • Choi, Hyo-Jin;Park, Jong-Kil;Jung, Woo-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.315-318
    • /
    • 2007
  • In order to reduce the amount of damage from natural disasters, we needs prevention meteorological database classified into the cause of disaster, damage elements etc. For this, we have analyzed four data, such as Statistical yearbook of calamities issued by the National Emergency Management Agency and Annual Climatological Report issued by the Korea Meteorological Administration and Recently 10 years for natural disaster damage and Statistics Yearbook from the Ministry of Government Administration and Human affairs. Through the analysis of disaster data, we have selected input variables, such as causes and elements, occurrence frequencies, vulnerable areas of natural disaster, etc. In order to reduce damage from natural disaster, the prevention activities and forecasting based on meteorological parameters and damage datas are required. In addition, it is necessary to process meteorological information for disaster prevention activities. Through these procedure, we have established the foundation of database about natural disasters. This database will be used to assess the natural disasters and build risk model and natural disasters mitigation plan.

  • PDF

Prevention Meteorological Database Information for the Assessment of Natural Disaster (자연재해 평가를 위한 방재기상 DB 정보)

  • Park, Jong-Kil;Jung, Woo-Sik;Choi, Hyo-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.41-49
    • /
    • 2007
  • In order to reduce the amount of damage from natural disasters and perform the natural disaster mitigation program, the prevention activities and forecasting based on meteorological parameters and disaster datas are required. In addition, it is necessary to process prevention meteorological information for prevention activities in advance. For this, we have analyzed four data, such as Statistical yearbook of calamities and Statistics Yearbook issued by the Ministry of Government Administration and Human affairs. And Annual Climatological Report issued by the Korea Meteorological Administration and Recently 10 years for natural disaster damage from the Central Disaster and Safety Countermeasures Headquarters. We analyzed the causes, elements, occurrence frequencies, and vulnerable areas of natural disaster, using the 4 disaster datas, but these datas was not consistent with their terminology and items. Through the analysis of a kind and damage of disaster, we have selected the disaster variables, such as causes and elements, the amount of damage, vulnerable areas of natural disaster, etc and made a database. This database will be used to assess the natural disasters and develop the risk model and natural disasters mitigation plan.

An Analysis of the Korean Peninsula Damages Vulnerabilities for a Natural Disaster Mitigation : Focus on Public Facilities Damages (자연재해저감을 위한 한반도 피해 취약성 분석 : 공공시설피해를 중심으로)

  • Park, Jong-Kil;Jung, Woo-Sik;Choi, Hyo-Jin
    • Journal of Environmental Science International
    • /
    • v.17 no.4
    • /
    • pp.413-422
    • /
    • 2008
  • This study aims to find out a state of the damages and vulnerable areas from natural disasters in the Korean peninsula using the prevention meteorological database information made by Park(2007b). Through the correlation analysis between damage elements and total property losses, we investigate the damages of public facilities, which have high correlation coefficient, and the cause of disasters and want to propose the basic information to set up the disaster prevention measures in advance. As a result, because most of the total property losses is the damages of public facilities, we can reduce the damages of natural disasters if we can predict the damages of public facilities or carry out the prevention activities in advance. The most vulnerable area for the natural disasters are Cangwon-do and Gyeongsangnam-do provinces. The vulnerable areas for the damages of public facilities by typhoon are Daegu metropolitan city, Cangwon-do, and Gyeongsangbuk-do provinces. These vulnerable areas will take place more frequently due to the climate change including Gyeongsangnam-do province so that we need to set up the disaster prevention measures and natural disaster mitigation plan. Also, we think that it has effect on reducing the damages of natural disasters to predict the damage scale and strongly perform the prevention activities in advance according to typhoon track and intensity.

Characteristics of Monthly Maximum Wind Speed of Typhoons Affecting the Korean Peninsula - Typhoon RUSA, MAEMI, KOMPASU, and BOLAVEN - (한반도 영향 태풍의 월별 최대풍 특징과 사례 연구 - 태풍 루사·매미·곤파스·볼라벤을 대상으로 -)

  • Na, Hana;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.28 no.4
    • /
    • pp.441-454
    • /
    • 2019
  • The present study analyzes the characteristics of 43 typhoons that affected the Korean Peninsula between 2002 and 2015. The analysis was based on 3-second gust measurements, which is the maximum wind speed relevant for typhoon disaster prevention, using a typhoon disaster prevention model. And the distribution and characteristics of the 3-second gusts of four typhoons, RUSA, MAEMI, KOMPASU, and BOLAVEN that caused great damage, were also analyzed. The analysis show that between May and October during which typhoons affected the Korean Peninsula, the month with the highest frequency was August(13 times), followed by July and September with 12 occurrences each. Furthermore, the 3-second gust was strongest at 21.2 m/s in September, followed by 19.6 m/s in August. These results show that the Korean Peninsula was most frequently affected by typhoons in August and September, and the 3-second gusts were also the strongest during these two months. Typhoons MAEMI and KOMPASU showed distribution of strong 3-second gusts in the right area of the typhoon path, whereas typhoons RUSA and BOLAVEN showed strong 3-second gusts over the entire Korean Peninsula. Moreover, 3-second gusts amount of the ratio of 0.7 % in case of RUSA, 0.8 % at MAEMI, 3.3 % at KOMPASU, and 21.8 % at BOLAVEN showed as "very strong", based on the typhoon intensity classification criteria of the Korea Meteorological Administration. Based on the results of this study, a database was built with the frequencies of the monthly typhoons and 3-second gust data for all typhoons that affected the Korean Peninsula, which could be used as the basic data for developing a typhoon disaster prevention system.

Development of Fire Weather Index Model in Inaccessible Areas using MOD14 Fire Product and 5km-resolution Meteorological Data (MODIS Fire Spot 정보와 5km 기상 재분석 자료를 활용한 접근불능지역의 산불기상위험지수 산출 모형 개발)

  • WON, Myoung-Soo;JANG, Keun-Chang;YOON, Suk-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.189-204
    • /
    • 2018
  • This study has developed a forest fire occurrence probability model for inaccessible areas such as North Korea and Demilitarized Zone and we have developed a real-time forest fire danger rating system that can be used in fire-related works. There are limitations on the research that it is impossible to conduct site investigation for data acquisition and verification for forest fire weather index model and system development. To solve this problem, we estimated the fire spots in the areas where access is impossible by using MODIS satellite data with scientific basis. Using the past meteorological reanalysis data(5㎞ resolution) produced by the Korea Meteorological Administration(KMA) on the extracted fires, the meteorological characteristics of the fires were extracted and made database. The meteorological factors extracted from the forest fire ignition points in the inaccessible areas are statistically correlated with the forest fire occurrence and the weather factors and the logistic regression model that can estimate the forest fires occurrence(fires 1 and non-fores 0). And used to calculate the forest fire weather index(FWI). The results of the statistical analysis show that the logistic models(p<0.01) strongly depends on maximum temperature, minimum relative humidity, effective humidity and average wind speed. The logistic regression model constructed in this study showed a relatively high accuracy of 66%. These findings may be beneficial to the policy makers in Republic of Korea(ROK) and Democratic People's Republic of Korea(DPRK) for the prevention of forest fires.

Construction of Spatial Information Big Data for Urban Thermal Environment Analysis (도시 열환경 분석을 위한 공간정보 빅데이터 구축)

  • Lee, Jun-Hoo;Yoon, Seong-Hwan
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.5
    • /
    • pp.53-58
    • /
    • 2020
  • The purpose of this study is to build a database of Spatial information Bigdata of cities using satellite images and spatial information, and to examine the correlations with the surface temperature. Using architectural structure and usage in building information, DEM and Slope topographical information for constructed with 300 × 300 mesh grids for Busan. The satellite image is used to prepare the Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), Bare Soil Index (BI), and Land Surface Temperature (LST). In addition, the building area in the grid was calculated and the building ratio was constructed to build the urban environment DB. In architectural structure, positive correlation was found in masonry and concrete structures. On the terrain, negative correlations were observed between DEM and slope. NDBI and BI were positively correlated, and NDVI was negatively correlated. The higher the Building ratio, the higher the surface temperature. It was found that the urban environment DB could be used as a basic data for urban environment analysis, and it was possible to quantitatively grasp the impact on the architecture and urban environment by adding local meteorological factors. This result is expected to be used as basic data for future urban environment planning and disaster prevention data construction.

Establishment of Wave Information Network of Korea (WINK) (전국파랑관측자료 제공시스템 WINK 구축)

  • Jeong, Weon-Mu;Oh, Sang-Ho;Ryu, Kyung-Ho;Back, Jong-Dai;Choi, Il-Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.326-336
    • /
    • 2018
  • Continuous measurement of nearshore waves around Korea over long period is very demanding to setup plans for prevention of disasters of port and coastal structures. In this respect, a new web-based system, termed as WINK, was established, which collects nearshore wave data from Korea Meteorological Agency (KMA), Korea Hydrographic and Oceanographic Agency (KHOA), and Ministry of Oceans and Fisheries (MOF) and provide them after quality control of the data. This paper describes technical aspects regarding collection and selection of the wave observation data, construction of wave hindcasting data, the methodology of quality control for the selected wave data, and overall process of building the web-based data providing system.

Application of Regional Landslide Susceptibility, Possibility, and Risk Assessment Techniques Using GIS (GIS를 이용한 광역적 산사태 취약성, 가능성, 위험성 평가 기법 적용)

  • 이사로
    • Economic and Environmental Geology
    • /
    • v.34 no.4
    • /
    • pp.385-394
    • /
    • 2001
  • There are serious damage of people and properties every year due to landslides that are occurred by heavy rain. Because these phenomena repeat and the heavy rain is not an atmospheric anomaly, the counter plan becomes necessary. The study area, Ulsan, is one of the seven metropolitan, and largest cities of Korea and has many large facilities such as petrochemical complex and factories of automobile and shipbuilding. So it is necessary assess the landslide hazard potential. In the study. the three steps of landslide hazard assessment techniques such as susceptibility, possibility, and risk were performed to the study area using GIS. For the analyses, the topographic, geologic, soil, forest, meteorological, and population and facility spatial database were constructed. Landslide susceptibility representing how susceptible to a given area was assessed by overlay of the slope, aspect, curvature of topography from the topographic DB, type, material, drainage and effective thickness of soil from the soil DB, lype age, diameter and density from forest DB and land use. Then landslide possibility representing how possible to landslide was assessed by overlay of the susceptibility and rainfall frequency map, Finally, landslide risk representing how dangerous to people and facility was assessed by overlay of the possibil. ity and the population and facility density maps The assessment results can be used to urban and land use plan for landslide hazard prevention.

  • PDF