• Title/Summary/Keyword: production data analysis

Search Result 2,725, Processing Time 0.033 seconds

A Case Study on Product Production Process Optimization using Big Data Analysis: Focusing on the Quality Management of LCD Production (빅데이터 분석 적용을 통한 공정 최적화 사례연구: LCD 공정 품질분석을 중심으로)

  • Park, Jong Tae;Lee, Sang Kon
    • Journal of Information Technology Services
    • /
    • v.21 no.2
    • /
    • pp.97-107
    • /
    • 2022
  • Recently, interest in smart factories is increasing. Investments to improve intelligence/automation are also being made continuously in manufacturing plants. Facility automation based on sensor data collection is now essential. In addition, we are operating our factories based on data generated in all areas of production, including production management, facility operation, and quality management, and an integrated standard information system. When producing LCD polarizer products, it is most important to link trace information between data generated by individual production processes. All systems involved in production must ensure that there is no data loss and data integrity is ensured. The large-capacity data collected from individual systems is composed of key values linked to each other. A real-time quality analysis processing system based on connected integrated system data is required. In this study, large-capacity data collection, storage, integration and loss prevention methods were presented for optimization of LCD polarizer production. The identification Risk model of inspection products can be added, and the applicable product model is designed to be continuously expanded. A quality inspection and analysis system that maximizes the yield rate was designed by using the final inspection image of the product using big data technology. In the case of products that are predefined as analysable products, it is designed to be verified with the big data knn analysis model, and individual analysis results are continuously applied to the actual production site to operate in a virtuous cycle structure. Production Optimization was performed by applying it to the currently produced LCD polarizer production line.

A Scheme of Data-driven Procurement and Inventory Management through Synchronizing Production Planning in Aircraft Manufacturing Industry (항공기 제조업에서 생산계획 동기화를 통한 데이터기반 구매조달 및 재고관리 방안 연구)

  • Yu, Kyoung Yul;Choi, Hong Suk;Jeong, Dae Yul
    • The Journal of Information Systems
    • /
    • v.30 no.1
    • /
    • pp.151-177
    • /
    • 2021
  • Purpose This paper aims to improve management performance by effectively responding to production needs and reducing inventory through synchronizing production planning and procurement in the aviation industry. In this study, the differences in production planning and execution were first analyzed in terms of demand, supply, inventory, and process using the big data collected from a domestic aircraft manufacturers. This paper analyzed the problems in procurement and inventory management using legacy big data from ERP system in the company. Based on the analysis, we performed a simulation to derive an efficient procurement and inventory management plan. Through analysis and simulation of operational data, we were able to discover procurement and inventory policies to effectively respond to production needs. Design/methodology/approach This is an empirical study to analyze the cause of decrease in inventory turnover and increase in inventory cost due to dis-synchronize between production requirements and procurement. The actual operation data, a total of 21,306,611 transaction data which are 18 months data from January 2019 to June 2020, were extracted from the ERP system. All them are such as basic information on materials, material consumption and movement history, inventory/receipt/shipment status, and production orders. To perform data analysis, it went through three steps. At first, we identified the current states and problems of production process to grasp the situation of what happened, and secondly, analyzed the data to identify expected problems through cross-link analysis between transactions, and finally, defined what to do. Many analysis techniques such as correlation analysis, moving average analysis, and linear regression analysis were applied to predict the status of inventory. A simulation was performed to analyze the appropriate inventory level according to the control of fluctuations in the production planing. In the simulation, we tested four alternatives how to coordinate the synchronization between the procurement plan and the production plan. All the alternatives give us more plausible results than actual operation in the past. Findings Based on the big data extracted from the ERP system, the relationship between the level of delivery and the distribution of fluctuations was analyzed in terms of demand, supply, inventory, and process. As a result of analyzing the inventory turnover rate, the root cause of the inventory increase were identified. In addition, based on the data on delivery and receipt performance, it was possible to accurately analyze how much gap occurs between supply and demand, and to figure out how much this affects the inventory level. Moreover, we were able to obtain the more predictable and insightful results through simulation that organizational performance such as inventory cost and lead time can be improved by synchronizing the production planning and purchase procurement with supply and demand information. The results of big data analysis and simulation gave us more insights in production planning, procurement, and inventory management for smart manufacturing and performance improvement.

Development of Data Warehouse Systems to Support Cost Analysis in the Ship Production (조선산업의 비용분석 데이터 웨어하우스 시스템 개발)

  • Hwang, Sung-Ryong;Kim, Jae-Gyun;Jang, Gil-Sang
    • IE interfaces
    • /
    • v.15 no.2
    • /
    • pp.159-171
    • /
    • 2002
  • Data Warehouses integrate data from multiple heterogeneous information sources and transform them into a multidimensional representation for decision support applications. Data warehousing has emerged as one of the most powerful tools in delivering information to users. Most previous researches have focused on marketing, customer service, financing, and insurance industry. Further, relatively less research has been done on data warehouse systems in the complex manufacturing industry such as ship production, which is characterized complex product structures and production processes. In the ship production, data warehouse systems is a requisite for effective cost analysis because collecting and analysis of diverse and large of cost-related(material/production cost, productivity) data in its operational systems, was becoming increasingly cumbersome and time consuming. This paper proposes architecture of the data warehouse systems to support cost analysis in the ship production. Also, in order to illustrate the usefulness of the proposed architecture, the prototype system is designed and implemented with the object of the enterprise of producing a large-scale ship.

Production Data Analysis to Predict Production Performance of Horizontal Well in a Hydraulically Fractured CBM Reservoir (수압파쇄된 CBM 저류층에서 수평정의 생산 거동예측을 위한 생산자료 분석)

  • Kim, Young-Min;Park, Jin-Young;Han, Jeong-Min;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.1-11
    • /
    • 2016
  • Production data from hydraulically fractured well in coalbed methane (CBM) reservoirs was analyzed using decl ine curve analysis (DCA), flow regime analysis, and flowing material balance to forecast the production performance and to determine estimated ultimate recovery (EUR) and timing for applying the DCA. To generate synthetic production data, reservoir models were built based on the CBM propertie of the Appalachian Basin, USA. Production data analysis shows that the transient flow (TF) occurs for 6~16 years and then the boundary dominated flow (BDF) was reached. In the TF period, it is impossible to forecast the production performance due to the significant errors between predicted data and synthetic data. The prediction can be conducted using the production data of more than a year after reached BDF with EUR error of approximately 5%.

Technical Consideration for Production Data Analysis with Transient Flow Data on Shale Gas Well (셰일가스정 천이유동 생산자료분석의 기술적 고려사항)

  • Han, Dong-kwon;Kwon, Sun-il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • This paper presents development of an appropriate procedure and flow chart to analyze shale gas production data obtained from a multi-fractured horizontal well according to flow characteristics in order to calculate an estimated ultimate recovery. Also, the technical considerations were proposed when a rate transient analysis was performed with field production data occurred to only $1^{st}$ transient flow. If production data show the $1^{st}$ transient flow from log-log and square root time plot analysis, production forecasting must be performed by applying different method as before and after of the end of $1^{st}$ linear flow. It is estimated by an area of stimulated reservoir volume which can be calculated from analysis results of micro-seismic data. If there are no bottomhole pressure data or micro-seismic data, an empirical decline curve method can be used to forecast production performance. If production period is relatively short, an accuracy of production data analysis could be improved by analyzing except the early production data, if it is necessary, after evaluating appropriation with near well data. Also, because over- or under-estimation for stimulated reservoir volume could take place according to analysis method or analyzer's own mind, it is necessary to recalculate it with fracture modeling, reservoir simulation and rate transient analysis, if it is necessary, after adequacy evaluation for fracture stage, injection volume of fracture fluid and productivity of producers.

Machine Learning Methodology for Management of Shipbuilding Master Data

  • Jeong, Ju Hyeon;Woo, Jong Hun;Park, JungGoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.428-439
    • /
    • 2020
  • The continuous development of information and communication technologies has resulted in an exponential increase in data. Consequently, technologies related to data analysis are growing in importance. The shipbuilding industry has high production uncertainty and variability, which has created an urgent need for data analysis techniques, such as machine learning. In particular, the industry cannot effectively respond to changes in the production-related standard time information systems, such as the basic cycle time and lead time. Improvement measures are necessary to enable the industry to respond swiftly to changes in the production environment. In this study, the lead times for fabrication, assembly of ship block, spool fabrication and painting were predicted using machine learning technology to propose a new management method for the process lead time using a master data system for the time element in the production data. Data preprocessing was performed in various ways using R and Python, which are open source programming languages, and process variables were selected considering their relationships with the lead time through correlation analysis and analysis of variables. Various machine learning, deep learning, and ensemble learning algorithms were applied to create the lead time prediction models. In addition, the applicability of the proposed machine learning methodology to standard work hour prediction was verified by evaluating the prediction models using the evaluation criteria, such as the Mean Absolute Percentage Error (MAPE) and Root Mean Squared Logarithmic Error (RMSLE).

Analysis on the Production Efficiency of Private Industrial Enterprises in 31 Provinces of China

  • GAO, Xin;KIM, Hyung-Ho;YANG, Jun-Won
    • The Journal of Economics, Marketing and Management
    • /
    • v.9 no.3
    • /
    • pp.11-21
    • /
    • 2021
  • Purpose: The purpose of this study is to understand the status quo of production efficiency in private industrial enterprises above designated scale in China's 31 provinces (including municipalities directly under the central government, autonomous regions) (hereinafter referred to as China's 31 provinces). Research design, data and methodology: Find out the factors affecting the development of production efficiency in private industrial enterprises, using DEA, Data Envelopment Analysis and Malmquist index analysis, build the evaluation model of production efficiency in private industrial enterprises, and analyze the data of China's 31 provinces private industrial enterprises in 2015-2019. Results: The research results show that the production efficiency of private industrial enterprises in China is improving on the whole. Although the total factor productivity has decreased slightly, the overall efficiency and pure technical efficiency have increased significantly. Conclusions: The conclusion of this study can provide reference for Chinese private industrial enterprises to improve production efficiency and make development plan. The limitation of this paper lies in the fact that the private industrial enterprises in inefficient provinces have not been given specific improvement plans.

A Study on Production Prediction Model using a Energy Big Data based on Machine Learning (에너지 빅데이터를 활용한 머신러닝 기반의 생산 예측 모형 연구)

  • Kang, Mi-Young;Kim, Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.453-456
    • /
    • 2022
  • The role of the power grid is to ensure stable power supply. It is necessary to take various measures to prepare for unstable situations without notice. After identifying the relationship between features through exploratory data analysis using weather data, a machine learning based energy production prediction model is modeled. In this study, the prediction reliability was increased by extracting the features that affect energy production prediction using principal component analysis and then applying it to the machine learning model. By using the proposed model to predict the production energy for a specific period and compare it with the actual production value at that time, the performance of the energy production prediction applying the principal component analysis was confirmed.

  • PDF

Analyzing Production Data using Data Mining Techniques (데이터마이닝 기법의 생산공정데이터에의 적용)

  • Lee H.W.;Lee G.A.;Choi S.;Bae K.W.;Bae S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.143-146
    • /
    • 2005
  • Many data mining techniques have been proved useful in revealing important patterns from large data sets. Especially, data mining techniques play an important role in a customer data analysis in a financial industry and an electronic commerce. Also, there are many data mining related research papers in a semiconductor industry and an automotive industry. In addition, data mining techniques are applied to the bioinformatics area. To satisfy customers' various requirements, each industry should develop new processes with more accurate production criteria. Also, they spend more money to guarantee their products' quality. In this manner, we apply data mining techniques to the production-related data such as a test data, a field claim data, and POP (point of production) data in the automotive parts industry. Data collection and transformation techniques should be applied to enhance the analysis results. Also, we classify various types of manufacturing processes and proposed an analysis scheme according to the type of manufacturing process. As a result, we could find inter- or intra-process relationships and critical features to monitor the current status of the each process. Finally, it helps an industry to raise their profit and reduce their failure cost.

  • PDF

An Analysis on the Factors Affecting Rice Production Efficiency in Myanmar

  • Tun, YuYu;Kang, Hye-Jung
    • East Asian Economic Review
    • /
    • v.19 no.2
    • /
    • pp.167-188
    • /
    • 2015
  • The objective of this study is to obtain a better understanding of the current rice production condition in Myanmar through efficiency analysis, especially, to examine the impact of farm mechanization on Myanmar rice production efficiency. For representation of efficiency and the determinants, this paper uses both the data envelopment analysis (DEA) and the stochastic frontier approach (SFA) with variable returns to scale on Myanmar rice production. The efficiency of the rice production was estimated and subsequently the determinants factors were investigated based on the estimated efficiency level of these sample farmers. The empirical evidence finds that farm mechanical tools significantly improve the Myanmar rice production efficiency.