• Title/Summary/Keyword: projectile

Search Result 397, Processing Time 0.025 seconds

A Study on the Unsteady Aerodynamics of Projectiles in Overtaking Blast Flowfields

  • Muthukumaran, C.K.;Rajesh, G.;Lijo, Vincent;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.409-414
    • /
    • 2011
  • A projectile that passes through a shock wave experiences drastic changes in the aerodynamic forces. These sudden changes in the forces are attributed to the wave structures produced by the projectile-shock wave interaction. A computational study using moving grid method is performed to analyze the effect of the projectile-shock wave interaction. Cylindrical and conical projectiles have been employed to study such interactions. This sort of unsteady interaction normally takes place in overtaking blast flow fields. It is found that the overall effect of overtaking a blast wave on the unsteady aerodynamic characteristics is hardly affected by the projectile configurations. However, it is noticed that the projectile configurations do affect the unsteady flow structures and hence the drag coefficient for the conical projectile shows considerable variation from that of the cylindrical projectile. The projectile aerodynamic characteristics, when it interacts with the secondary shock wave, are analyzed. It is also observed that the change in the characteristics of the secondary shock wave during the interaction is different for different projectile configurations.

  • PDF

Supersonic and Subsonic Projectile Overtaking Problems in Muzzle Gun Applications

  • Gopalapillai, Rajesh;Nagdewe, Suryakant;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.711-722
    • /
    • 2008
  • A projectile when passes through a moving shock wave, experiences drastic changes in the aerodynamic forces as it moves from a high-pressure region to a low pressure region. These sudden changes in the forces are attributed to the wave structures produced by the projectile-flow field interaction, and are responsible for destabilizing the trajectory of the projectile. These flow fields are usually encountered in the vicinity of the launch tube exit of a ballistic range facility, thrusters, retro-rocket firings, silo injections, missile firing ballistics, etc. In earlier works, projectile was assumed in a steady flow field when the computations start and the blast wave maintains a constant strength. However, in real situations, the projectile produces transient effects in the flow field which have a deterministic effect on the overtaking process. In the present work, the overtaking problem encountered in the near-field of muzzle guns is investigated for several projectile Mach numbers. Computations have been carried out using a chimera mesh scheme. The results show that, the unsteady wave structures are completely different from that of the steady flow field where the blast wave maintains a constant strength, and the supersonic and subsonic overtaking conditions cannot be distinguished by identifying the projectile bow shock wave only.

  • PDF

A Study on the shape deformation of ball projectile(5.56mm) under the low velocity impact (저속충격시 Ball 탄(5.56mm)의 형상변화에 관한 연구)

  • 손세원;이두성;홍성희;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.865-868
    • /
    • 2002
  • This study investigated the shape deformation of ball projectile(5.56mn) under the low energy impact by the use of the drop weight impact tester. ball projectile(5.56mm) consisted of the copper face with a lead core. The impact conditions were changed with the variations of the mass and the drop height of the impact tup. Shape deformation of ball projectile(5.56mm) after low velocity impact was measured using a video microscope and CCD camera. The test result showed that impact energy by changing of drop height of the impact tup affected shape deformation of ball projectile(5.56mm). So, it is important to study the relativity between shape deformation of ball projectile(5.56mm) and ballistic protection of plate(such as hybrid composite laminates) under the high velocity impact.

  • PDF

A Computational Study of the Aerodynamics of a Projectile Launched from a Ballistic Range (Ballistic Range로 부터 발사되는 Projectile 공기역학에 관한 수치해석적 연구)

  • Jun Gu-Sik;Lim Chae-Min;Kim Heuy-Dong;Lee Jeong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.371-375
    • /
    • 2006
  • A computational work has been performed to investigate the aerodynamics of a projectile which is launched from a ballistic range. A moving coordinate method for a multi-domain technique is employed to simulate unsteady projectile flows with a moving boundary. The variation of a virtual mass and the shape of projectile are added to the axisymmetric unsteady Euler equation systems. The present computational results properly predict the velocity, acceleration, drag histories and the major flow characteristics of the projectile.

  • PDF

Projectile's Velocity Effect for Voltage Induced at Sensing Coil for Applying to Air Bursting Munition

  • Ryu, Kwon-Sang;Shin, Jun-Goo;Jung, Kyu-Chae;Son, Derac.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.90-94
    • /
    • 2013
  • We designed a model composed of a ring type magnet, a yoke, and a sensing coil embedded in a projectile for simulating the muzzle velocity. The muzzle velocity was obtained from the master curve for the induced voltage at sensing coil and the velocity as the projectile pass through the magnetic field. The induced voltage and the projectile's velocity are fitted by the $2^{nd}$ order polynomial. The skin effect difference between projectiles which consist of aluminum-aluminum and aluminum-steel was small. The projectile will surely be burst at the pre-determined target area using the flight time and the projectile muzzle velocity calculated from the voltage induced at the sensing coil on the projectile.

Aerodynamics of the Projectile Overtaking a Moving Shock Wave (이동충격파를 추월하는 발사체의 공기역학)

  • Rajesh, C.;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.299-302
    • /
    • 2007
  • The aerodynamics of a projectile overtaking a moving shock wave is analyzed using a chimera scheme. The flow field characteristics for various shock wave Mach number and projectile masse are investigated. the unsteady forces acting on the projectile for both supersonic and impossible overtaking conditions are computed in order to analyze the aerodynamic characteristics of the projectile. It is seen that the projectile Mach number significantly affects the flow fields for both supersonic and impossible overtaking. Unsteady drag is influenced by the overtaking conditions. The unsteady drag coefficient is the highest for the impossible overtaking condition.

  • PDF

Effect of Propelling Velocity on the Restoring Force in Induction type Coil Guns

  • Kim, Ki-Bong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.117-119
    • /
    • 1994
  • While the projectile in the induction type coil guns is in motion, there exists an induced current in the sleeve coils of the projectile. The motion includes not only the z-axial movement but transversal movement. The projectile in coil guns, which is not supported physically, gets a force in the transversal axis to have a motion in this axis. As a result of this motion, sleeve effects are exhibited to the projectile. This paper presents the analysis of the secondary effect especially due to the propelling velocity of the projectile.

  • PDF

A Theoretical Study for the Design of a New Ballistic Range

  • Rajesh G.;Lee J.M.;Back S.C.;Kim Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1019-1029
    • /
    • 2006
  • The ballistic range has long been employed in a variety of engineering fields such as high-velocity impact engineering, projectile aerodynamics, creation of new materials, etc, since it can create an extremely high-pressure state in very short time. Of many different types of ballistic ranges developed to date, two-stage light gas gun is being employed most extensively. In the present study, a theoretical work has been made to develop a new type of ballistic range which can easily simulate a flying projectile. The present ballistic range consists of high-pressure tube, piston, pump tube, shock tube and launch tube. The effect of adding a shock tube in between the pump tube and launch tube is investigated. This improvement is identified as the reduction in pressures in the high pressure tube and pump tube while maintaining the projectile velocity. Equations of motions of piston and projectile are solved using Runge-Kutta methods. Dependence of projectile velocity on various design factors such as high pressure tube pressure, piston mass, projectile mass, area ratio of pump tube to launch tube and type of driver gas in the pump tube are also analyzed. Effect of various gas combinations is also investigated. Calculations show that projectile velocities of the order 8 km/sec could be achieved with the present ballistic range.

Integrity Assessment on the Nuclear Transport Cask under the Ballistic Impact (발사 충격을 받는 방사성 물질 운반용기의 건전성 평가)

  • Yang, Tae-Ho;Lee, Young-Shin;Lee, Hyun-Seung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.15-22
    • /
    • 2014
  • As the risk of the various external risk was increased, a study on the integrity assessment of the nuclear transport cask was needed. In this paper, an integrity assessment of the nuclear transport cask under the ballistic impact was studied. The projectile with L/D = 5 was used in simulation. The applied head shapes of the projectile were five types such as flat shape, conical shape, hemispherical shape, truncated conical and sliced flat shape, respectively. The range on the velocity of the projectile was 85 m/s to 680 m/s. The cask body of the nuclear transport cask was not penetrated by the projectile speed up to Vprojectile = 510 m/s. As the cask body was penetrated by the all types projectile with Vprojectile = 680 m/s and the cask lead in the nuclear transport cask was collided with the projectile. As the projectile moved to 31.3 mm in the cask lead, the cask lead was not penetrated by the projectile with Vprojectile = 680 m/s. The integrity assessment on the nuclear transport cask under ballistic impact up to Vprojectile = 680 m/s was obtained.

Investigation Into Protection Performance of Projectile Using Flying Plate (판재를 이용한 초고속 위협체의 방호성능에 대한 해석적 연구)

  • Choi, Hyoseong;Shin, Hyunho;Yoo, Yo-Han;Park, Jahng Hyon;Kim, Jong-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.1039-1045
    • /
    • 2016
  • We investigated the protection capability of a plate against high speed projectiles demonstrating collision and penetration behaviors by finite element analysis. The element erosion method was used for penetration analysis, which showed that the speed of the projectile was slightly reduced by the collision with the protection plate. Protection capability was measured by the projectile's attitude angle change because the damage of our tanks by projectiles was also dependent on the projectile-tank collision angle. When the length of the protection plate was sufficiently long, the projectile was severely deformed and incapacitated. In the case of a small plate, the projectile was deformed only in the collision region. Thus, projection capability was investigated by the change of attitude angle. The effect of collision angle, velocity, and length of the plate on the rotational and vertical velocities of the projectile was investigated.