• Title/Summary/Keyword: propene

Search Result 54, Processing Time 0.037 seconds

Effect of Propene($C_3H_6$) ON NO-$NO_2$ Conversion Process in a Pulsed Corona Discharge (펄스코로나 방전에서 프로핀($C_3H_6$)이 NO-$NO_2$ 변환에 미치는 영향에 관한 연구)

  • 박광서;전배혁;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.67-77
    • /
    • 2000
  • Investigated was the effect of propene(C3H6) on the NO-NO2 conversion in dry exhaust gases from lean burn engine using a pulsed corona discharge. A kinetic model was developed to characterize the plasma chemistry in simulated exhausts containing propene. The model uses ELENDIF program to solve Boltzmann equation for electron energy distribution function, and CHEMKIN-II program to solve stiff ODE(ordinary differential equation) problems for species concentrations. The corona discharge energy per pulse and the time-space averaged E/N were obtained by fitting the model to experimental data. The model calculation shows good agreement for NO and NO2 concentrations with the experimental data, and predicts the formation of byproducts such as CH2O, CH3HCO, CO AND CH3NO2 Propene enhances the NOx conversion enormously at lower energy density and the NOx conversion increases with the increase of initial propene and oxygen concentration, and temperature.

  • PDF

Effect of Fuel Mixing on PAH and Soot Formation in Counterflow Diffusion Flames (다양한 연료의 혼합에 따른 대향류 확산화염에서의 PAH 및 매연생성 특성)

  • Yoon, S.S.;Lee, S.M.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.137-142
    • /
    • 2003
  • In order to investigate the effect of fuel mixing on PAH and soot formation, four species of methane, ethane, propane and propene have been mixed in counterlfow ethylene diffusion flame. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Results showed that the mixing of ethane (or propane) in ethylene diffusion flame produces more PAHs and soot than those of propene, even though the propene diffusion flame produces more PAHs and soot than that of propane and ethane. Considering that propene directly dehydrogenates to propargyl radical, this behavior implied that the enhancement of PAH and soot formation by the fuel mixing of ethylene and ethane (or propane) cannot be explained by propargyl radical directly dehydrogenated from ethane (or propane).

  • PDF

Production of propylene oxide from propene by a methanotroph, Methylosinus trichosporium OB3b (Methane 자화성 세균 Methylosinus trichosporium OB3b에 의한 propene으로부터 propylene oxide의 생산)

  • Chung, Dae-Seok;Peck, Un-Hwa;Bang, Wong-Gi
    • Applied Biological Chemistry
    • /
    • v.34 no.4
    • /
    • pp.386-392
    • /
    • 1991
  • Whole cells of Methylosinus trichosporium OB3b, the obligate methylotroph, were used to produce propylene oxide from propane. This strain has methane monooxygenase, which catalyzes the conversion methane to methanol and can catalyze also the conversion propane to propylene oxide. Optimal condition for the production of propylene oxide was investigated in resting-whole cell system. The optimal pH and temperature was 7.0 and $35^{\circ}C$ respectively. The end product, propylene oxide, didn't inhibit the production of propylene oxide and was not further metabolized in reaction mixture. The addition of methane metabolites (methanol, formaldehde and formic acid) to the reaction mixture stimulated formation of propylene oxide by $3{\sim}4$ times, and methanol was the most effective especially. Under the optimal conditions, the 14.2 mM of propylene oxide was produced after incubation of 60 min. and the conversion ratio of propane to propylene oxide was approximately 8%.

  • PDF

Effect of Fuel Mixing on PAH and Soot Formation in Counterflow Diffusion Flames (다양한 연료의 혼합에 따른 대향류 확산화염에서의 PAH 및 매연생성 특성)

  • Yoon, S.S.;Lee, S.M.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.8-14
    • /
    • 2003
  • In order to investigate the effect of fuel mixing on PAH and soot formation, four species of methane, ethane, propane and propene have been mixed in counterlfow ethylene diffusion flame. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Results showed that the mixing of ethane (or propane) in ethylene diffusion flame produces more PAHs and soot than those of propene. Considering that propene directly dehydrogenates to propargyl radical, this behavior implied that the enhancement of PAH and soot formation by the fuel mixing of ethylene and ethane (or propane) cannot be explained solely by propargyl radical directly dehydrogenated from ethane (or propane). Thus, combination reactions between C1 and C2-species for the formation of propargyl was suggested to identify the synergistic effect occurring in the flames of ethylene and propane (or ethane) mixtures.

  • PDF

Thermal and Photoinduced Silylallylation Reactions of Organic Halides with 3-Stannyl-2-(silylmethyl)propene

  • 강경태;황성심;곽우영;윤웅찬
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.7
    • /
    • pp.801-804
    • /
    • 1999
  • Thermal and photoinduced silylallylation reactions of organic halides with 3-stannyl-2-(silylmethyl)propene are explored. Silylallylations occur in moderate to high yields, producing various functionalized allylsilane products in which halide carbon is bonded to the terminal alkenic carbon of allylsilane with the removal of tributyltin group. The reactions, which tolerate functional groups such as carbonyl, ester, nitrile, acetal, and ketal, hold synthetic potential for the construction of functionalized allylsilanes.

New Radical Allylation Reactions Using 2-Bromo-3-(phenylthio)propene and Their Application to the Synthesis of Carbocyclic Compounds

  • 유병우;Dennis P. Curran
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1009-1018
    • /
    • 1996
  • A study on the application of vinyl radical cyclization via free radical allylation reaction in the synthesis of various carbocyclic compounds is described. In connection with this study, a new allyl transfer reagent, 2-bromo-3-(phenylthio)propene 1 is developed and it was shown that vinyl radical cyclization through free radical allylation reaction using reagent 1 provides a valuable approach to carbocyclic systems with a reactive exo-alkylidene moiety, which is advantageous for further transformations.

Effect of Hydrocarbons on the Promotion of NO-$NO_2$ Conversion in NonThermal Plasma DeNOx Treatment (비열 플라즈마에 의한 NO의 산화에 탄화수소 첨가제가 미치는 영향)

  • Shin, Hyun-Ho;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.33-46
    • /
    • 2000
  • In the present study, a systematic chemical kinetic calculations were made to investigate the augmentation of NO-$NO_2$ conversion due to the addition of various hydrocarbons (methane, ethylene, ethane, propene, propane) in the nonthermal plasma treatment. It is included in the present conclusion that the reaction between hydrocarbon and oxygen radicals induced by electron collision, is believed to be a primarily process for triggering the overall NO oxidation and the eventual NOx reduction. Upon the completion of the initiating step, various radicals (OH, $NO_2$ etc.) successively produced by hydrocarbon decomposition form the primary path of NO-$NO_2$ conversion. When the initiating step is not activated, hydrocarbon consumption rate appeared to be very low, thereby the targeted level of NO conversion can only be achieved by the addition of more input energy. Present study showed ethylene and propene to have higher affinity with 0 radical under all conditions, thereby both of these hydrocarbons show very fast and efficient NO-$NO_2$ oxidation. It was also shown that propene is superior to ethylene in the aspect of NOx removal.

  • PDF

Effect of Hydrocarbons on the Promotion of $NO-NO_{2}$ Conversion in NonThermal Plasma DeNOx Treatment (비열 플라즈마에 의한 NO의 산화에 탄화수소 첨가제가 미치는 영향)

  • Shin, Hyun-Ho;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.178-188
    • /
    • 2000
  • In the present study, a systematic chemical kinetic calculations were made to investigate the augmentation of $NO-NO_{2}$ conversion due to the addition of various hydrocarbons (methane, ethylene, ethane, propene, propane) in the nonthermal plasma treatment. It is included in the present conclusion that the reaction between hydrocarbon and oxygen radicals induced by electron collision, is believed to be a primarily process for triggering the overall NO oxidation and the eventual NOx reduction. Upon the completion of the initiating step, various radicals (OH, $HO_{2}$ etc.) successively produced by hydrocarbon decomposition form the primary path of $NO-NO_{2}$ conversion. When the initiating step is not activated, hydrocarbon consumption rate appeared to be very low, thereby the targeted level of NO conversion can only be achieved by the addition of more input energy. Present study showed ethylene and propene to have higher affinity with 0 radical under all conditions, thereby both of these hydrocarbons show very fast and efficient $NO-NO_{2}$ oxidation. It was also shown that propene is superior to ethylene in the aspect of NOx removal.

  • PDF

Changes in Pungent Components of Dolsan Leaf Mustard Kimchi during Fermentation (돌산 갓 김치 숙성 중 매운맛 성분의 변화)

  • 전순실;최옥자;조영숙;박석규;박정로
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.1
    • /
    • pp.54-59
    • /
    • 1995
  • Compositional changes in pungent components of Dolsan Leaf Kimchi during fermentation were investigated. Major volatile compounds identified in the kimchi were 3-isothiocyanate-1-propene(allyl isothiocyanate, AITC) di-2-propenyl disulfide, 1-methoxy-2-butanol, 4-isothiocyanate-1-butene and dimethyl trisulfide. The contents of allyl isothiocyanate and 4-isothiocyanate-1-butene decreased, while dimethyl trisulfide increased during fermentation and storage. 1-methoxy 2-butanol increased at the initial stage of fermentation, showing highest at 2~3 days, and decreased thereafter. Di-2-propenyl disulfide decreased after 5 days and increased after 10days of storage. Total glucosinolate content increased by 3days and decreased from 4days of storage.

  • PDF