• Title/Summary/Keyword: protection wall

Search Result 282, Processing Time 0.024 seconds

An Availability Assessment of Protection Wall Installed in LPG Filling Station (LPG 충전소 내 설치된 방호벽의 효용성 평가)

  • Lee, Jin-Han;Jo, Young-Do;Moon, Jong-Sam;Kim, Lae Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.38-45
    • /
    • 2018
  • Jet fire, pool fire, and vapor cloud explosion are major accident scenarios in LPG filling station. The protection wall would mitigate radiation effect in a jet fire. In case of a pool fire, the protection wall would restrict expanding the pool area. The protection wall might both obstruct the dispersion of released vapor and protect blast overpressure in a vapor cloud explosion scenario. In this paper, An availability assessment method of the protection wall how much reduce damage to receptors is proposed. Additionally application cases are presented for the effectiveness of protection wall in the LPG filling station. The study shows that the protection wall can effectively reduce the death probabilities of receptors located behind the wall in cases of the jet fires and the vapor cloud explosions.

A Study on the Vibration Protection Efficiency of EPS Wall Barrier with Centrifuge Model Tests (원심모형실험을 통한 EPS 차단벽의 방진효과에 관한 연구)

  • Lee, Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.101-110
    • /
    • 2006
  • In general, environment-induced vibration propagates from the center of source to the destination through ground. In fact, the mechanism of wave propagation is highly dependent on the ground conditions, and various methods to protect structures from such a ground vibration have been proposed. The method of wall barrier has been frequently used to cut off ground vibration effectively. However, the capability of wall barrier may be affected by various factors like constituent material of it. Therefore, it is important to figure out appropriate material for the wall barrier. This study is focused on the effect of EPS on the vibration protection. Centrifuge model tests were performed. Two types of models such as a cylindrical and a rectangular wall were used. For the cylindrical type of wall, installation depth was changed, while the length of the wall varied fur the rectangular type to figure out the capability of vibration protection.

Parametric Study of Offshore Pipeline Wall Thickness by DNV-OS-F101, 2010

  • Choi, Han-Suk;Yu, Su-Young;Kang, Dae-Hoon;Kang, Hyo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.1-7
    • /
    • 2012
  • DNV-OS-F101 includes the concept development, design, construction, operation,and abandonment of offshore pipeline systems. The main objective of this offshore standard (OS) is to ensure that pipeline systems are safe during the installation and operational period. The pipeline design philosophy also includes public safety and environmental protection. The mechanical wall thickness design of a pipeline shall follow the design objectives and safety philosophy. This new design code includes a very sophisticated design procedure to ensure a safe pipeline, public safety, and environmental protection. This paper presents the results of a parametric study for the wall thickness design of offshore pipelines. A design matrix was developed to cover the many design factors of pipeline integrity, public safety, and environmental protection. Sensitivity analyses of the various parameters were carried out to identify the impacts on offshore pipeline design.

SHIELD DESIGN OF CONCRETE WALL BETWEEN DECAY TANK ROOM AND PRIMARY PUMP ROOM IN TRIGA FACILITY

  • Khan, M J H;Rahman, M;Ahmed, F U;Bhuiyan, S I;Haque, A;Zulquarnain, A
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.4
    • /
    • pp.190-193
    • /
    • 2007
  • The objective of this study is to recommend the radiation protection design parameters from the shielding point of view for concrete wall between the decay tank room and the primary pump room in TRIGA Mark-II Research Reactor Facility. The shield design for this concrete wall has been performed with the help of Point-kernel Shielding Code Micro-Shield 5.05 and this design was also validated based on the measured dose rate values with Radiation Survey Meter (G-M Counter) considering the ICRP-60 (1990) recommendations for occupational dose rate limit ($10{\mu}Sv/hr$). The recommended shield design parameters are: (i) thickness of 114.3 cm Ilmenite-Magnetite Concrete (IMC) or 129.54 cm Ordinary Reinforced Concrete (ORC) for concrete wall A (ii) thickness of 66.04 cm Ilmenite-Magnetite Concrete (IMC) or 78.74 cm Ordinary Reinforced Concrete (ORC) for concrete wall B and (iii) door thickness of 3.175 cm Mild Steel (MS) on the entrance of decay tank room. In shielding efficiency analysis, the use of I-M concrete in the design of this concrete wall shows that it reduced the dose rate by a factor of at least 3.52 times approximately compared to ordinary reinforced concrete.

Multi-level Protection Infrastructure for Virus Protection (다단계 바이러스 차단 구조 연구)

  • 노시춘;김귀남
    • Proceedings of the Korea Information Assurance Society Conference
    • /
    • 2004.05a
    • /
    • pp.187-198
    • /
    • 2004
  • Virus protection infrastructure management is network infrastructure management, traffic route management, virus protection zone expansion, and virus protection management for gateway area. This research paper provides a diagnosis of characteristics and weaknesses of the structure of existing virus protection infrastructure, and recommends an improved multi-level virus protection infrastructure as a measure for correcting these weaknesses. Unproved virus protection infrastructure fitters unnecessary mail at the gateway stage to reduce the toad on server. As a result, number of transmission accumulation decreases due to the reduction in the CPU load on the Virus wall and increase in virus treatment rate.

  • PDF

A study on an Infrastructure for Virus Protection (바이러스 차단 인프라 구조에 관한 연구)

  • Noh, Si-Choon;Kim, Su-Hee;J. Kim, Kui-Nam
    • Convergence Security Journal
    • /
    • v.5 no.1
    • /
    • pp.53-62
    • /
    • 2005
  • Virus protection infrastructure managementis network infrastructure management, traffic route management, virus protection zone expansion, and virus protection management for gateway area. This research paper provides a diagnosis of characteristics and weaknesses of the structure of existing virus protection infrastructure, and recommends an improved multi-level virus protection infrastructure as a measure for correcting these weaknesses. Improved virus protection infrastructure filters unnecessary mail at the gateway stage to reduce the load on server. As a result, numberof transmission accumulation decreases due to the reduction in the CPU load on the Virus wall and increase in virus treatment rate.

  • PDF

Reinforced concrete wall as protection against accidental explosions in the petrochemical industry

  • Ambrosini, Daniel;Luccioni, Bibiana Maria
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.213-233
    • /
    • 2009
  • In this paper the study of a reinforced concrete wall used as protection against accidental explosions in the petrochemical industry is presented. Many alternatives of accidental scenarios and sizes of the wall are analyzed and discussed. Two main types of events are considered, both related to vessel bursts: Pressure vessel bursts and BLEVE. The liberated energy from the explosion was calculated following procedures firmly established in the practice and the effects over the structures and the reinforced concrete wall were calculated by using a CFD tool. The results obtained show that the designed wall reduces the values of the peak overpressure and impulse and, as a result, the damage levels to be expected. It was also proved that a reinforced concrete wall can withstand the blast load for the considered events and levels of pressure and impulse, with minor damage and protect the buildings.

TNT Explosion Demonstration and Computational Fluid Dynamics for Safety Verification of Protection Wall in Hydrogen Refueling Station (수소충전소 방호벽 안전성 검증을 위한 TNT 폭발실증 및 전산유동 해석)

  • Yun-Young Yang;Jae-Geun Jo;Woo-Il Park;Hyon Bin Na
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.102-109
    • /
    • 2023
  • In realizing a hydrogen society, it is important to secure the safety of the hydrogen refueling station, which is the facility where consumers can easily meet hydrogen. The hydrogen refueling station consists of compressed gas facilities that store high-pressure hydrogen, and there is a risk that the high-pressure compressed gas facility will rupture due to a fire explosion due to hydrogen leakage in the facility or the influence of surrounding fires. Accordingly, the Korea Gas Safety Corporation is making every effort to find out risk factors from the installation stage, reflect them in the design, and secure safety through legal inspection. In this study, a TNT explosion demonstration test using a protection wall was conducted to confirm the safety effect of the protection wall installed at the hydrogen refueling station, and the empirical test results were compared and verified using FLACS-CFD, a CFD program. As a result of the empirical test and CFD analysis, it was confirmed that the effect of reducing the explosion over-pressure at the rear end of the protection wall decreased from 50% to up to 90% depending on the location, but the effect decreased when it exceeded a certain distance. The results of the empirical test and computer analysis for verifying the safety of the protection wall will be used in proposals for optimizing the protection wall standards in the future.

A Study on the Fire Protection Safety of the Public-utilization Shops (다중이용업소의 소방안전기준에 관한 연구)

  • Kim, Yeob-rae
    • Journal of the Society of Disaster Information
    • /
    • v.5 no.2
    • /
    • pp.10-21
    • /
    • 2009
  • This study contains the fire protection safety of the public-utilization shops. The toll of fires in the public-utilization shops is so heavy in spite the less occurency. The shops are mostly compartmented into small rooms by partition wall which hinders the evacuation of the people on fire. This study provides additional requirements on the fire safety of the public-utilization shops needed for human life and property.

  • PDF

The study of method local scour protection to the existing piers bridge (기존 교각주변의 국부세굴 방지공법에 관한 연구)

  • Park, Sang-Kil;Chang, Tae-Rae;Park, Byung-Yul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.598-602
    • /
    • 2006
  • Local scour is associate with particular local types of vortex around bridge piers. This paper is method of protection local scour for the existing Busan City subway 3 Line bridge piers and Gupo large bridge piers. In order to take design of protection of local scour this bridge piers, We calculate the local scour hole of depth , scour width, riprap construction , filter construction by formulas. We had experimental hydraulic model test for this bridge piers in order to take proof for the calculation of local scour. We knew that the vortex intensifies the local flow velocities and acts to erode sediment from the scour hole and transport it downstream. As the result of hydraulic model test, we could suggest three types method of protection local scour this bridges. We knew that FHWA HEC-18(Richardson et al. 2001: Modified CSU) Formula is useful to checking calculation as application of field. One is pier protection using the sheet piles and riprap, the others are pier protection using the riprap with filter and to make renew Wall-caisson. The best method of protection for the existing Busan City subway 3 Line bridge piers and Gupo large bridge piers is pier protection using the sheet piles and riprap.

  • PDF