• Title/Summary/Keyword: protein kinase C

Search Result 1,396, Processing Time 0.027 seconds

Effects of Cheonggukjang on Immune Responses and Gastrointestinal Functions in Rats

  • Lee, Chang-Hyun;Yang, Eun-In;Song, Geun-Seoup;Chai, Ok-Hee;Kim, Young-Soo
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.19-23
    • /
    • 2006
  • Effects of cheonggukjang on immunohistochemical reactions in gastrointestinal (GI) tract of rats were investigated. $CD4^+/CD8^+$ immunoreactive cells of cheonggukjang-fed diet groups were more strongly stained in lamina propria of mucosa and submucosa than those of basal diet group. Universal nitric oxide synthase immunoreactive density in colon was mildly stained in surface epithelium and mucous secretory gland, and strongly stained in submucosa and myenteric plexus in muscle layers of all cheonggukjang-fed diet groups. Protein kinase C-${\alpha}$ immunoreactive cells in colons of 15 and 25% cheonggukjang-fed diet groups were more strongly stained in mucosa, submucosa, and muscle layers than those of basal diet group. These results indicate mucosal immune activity, gastrointestinal motility, blood circulation, and physiological activities of enteroendocrine cells in GI tract could be increased with cheonggukjang intake.

Evidence for Regulation of Interaction of Endogenous Protein Kinase C(Pkc) Substrates with Plasma Membrane by PKC Down-Regulation in K562 Cells

  • Kim, Young-Sook
    • Archives of Pharmacal Research
    • /
    • v.18 no.5
    • /
    • pp.301-307
    • /
    • 1995
  • In the particulate fraction obtained from PKC-down regulated K562 cells by treatment for 24 h with 200nM TPA, phosphorylation of two proteins with molecular weight, 100 kDa and 23 kDa (designated p100 and p23, respectvely) was depleted and addition of exogenous purified PKC to this fraction failed to testore their phosphorylation. However, in the soluble fraction, all of phosphoproteins abolished by long-term treatment with TPA were restored by exogenously added PKC. Phosphorylation of two proteins was increased by short-term tretment (20 min), and diminished with the persistant exposure to TPA as well as at a concentration as low as 1nM. When K562 cells were treated with 1 nM and 200 nM TPA for 24 h, phosphorylation of p100 was restored with or without exogenous PKC on 2-3day and 6day after removal of treated TPA, respectively. Two-dimensional electrophoresis of phosphoproteins revealed that phosphorylated p100 (pl=5.9) and p66 species were completely absent from the particulate fraction of K562 cells treated with 200nM TPA for 24 h. These results suggest that the interaction of sensitive endogenous substrates, p100 and p23 with the plasma membrane might be regulated by PKC-down regulation without displacement to the cytosol and the interaction of p100 with the membrane might be reveersible.

  • PDF

Effect of Staurosporine on the Long-term Secretion of Catecholamines Induced by Various Secretagogues in Cultured Bovine Adrenal Medullary Chromaffin Cells

  • Choi, Seong-Soo;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.503-510
    • /
    • 2001
  • Long-term treatment of cultured bovine adrenal medullary chromaffin (BAMC) cells with arachidonic acid $(100\;{\mu}M),$ angiotesnin II (100 nM), prostaglandin $E_2\;(PGE_2;\;10\;{\mu}M),$ veratridine $(2\;{\mu}M)$ or KCl (55 mM) for 24 hrs increased both norepinephrine and epinephrine levels in the supernatant. Pretreatment with staurosporine (10 nM), a protein kinase C (PKC) inhibitor, completely blocked increases of norepinephrine and epinephrine secretion induced by arachidonic acid, angiotensin II, $PGE_2,$ veratridine or KCl. In addition, K252a, another PKC inhibitor whose structure is similar to that of staurosporine, effectively attenuated both norepinephrine and epinephrine secretion induced by arachidonic acid. However, K252a did not affect the catecholamine secretion induced by angiotensin II, $PGE_2,$ veratridine or KCl. Our results suggest that staurosporine may inhibit long-term catecholamine secretion induced by various secretagogues in a mechanism other than inhibiting PKC signaling. Furthermore, long-term secretion of catecholamines induced by arachidonic acid may be dependent on PKC pathway.

  • PDF

Facile Synthesis and Radioiodine Labeling of Hypericin

  • Kim, Sang-Wook;Park, Jeong-Hoon;Yang, Seung-Dae;Hur, Min-Goo;Kim, Yu-Seok;Chai, Jong-Seo;Kim, Young-Soon;Yu, Kook-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1147-1150
    • /
    • 2004
  • Hypericin (1,3,4,6,8,13-hexahydroxy-10,11-dimethylphenanthro[1,10,9,8-opqra]perylene-7,14-dione), an antidepressant which is also known to be a potent protein kinase C (PKC) inhibitor was synthesized as a precursor for radioiodine labeling via two step reactions. Malignant glioma cells express higher PKC activity compared to untransformed glial cell. Here we report the synthesis and radioiodine labeling of hypericin as a potential brain tumor imaging radiopharmaceutical. The reference compound, 2-iodohypericin, and its radiolabelled analogues, 2-[$^{123}I$]iodohypericin and 2-[$^{124}I$]iodohypericin have been prepared by the reaction of hypericin with NaI or [$^{123}I$]NaI or [$^{124}I$]NaI. The labeling yield was 60-65% for each analogue and the optimal reaction time was 10 min. The purification and isolation of the labelled products were achieved by a reversed-phase HPLC.

Induction of Differentiation of the Human Histocytic Lymphoma Cell Line U-937 by Hypericin

  • Kim, Joo-Il;Park, Jae-Hoon;Park, Hee-Juhn;Choi, Seung-Ki;Lee, Kyung-Tae
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.41-45
    • /
    • 1998
  • Hypericin, a photosensitizing plant pigment, was found to be a potent inducer of differentiation of human myeloid leukemia U-937 cells. At a concentration of $0.2{\mu}M$, hypericin exhibited 50% growth inhibition. An effect on cell differentiation by hypericin was assessed by its ability to induce phagocytosis of latex particles, and to reduce nitroblue tetrazolium (NBT). Approximately 51% of $0.2{\mu}M$ hypericin-treated cells were stained with NBT and 63% showed phagocytic activity. In order to establish whether hypericin induces differentiation of U-937 cells to macrophage or granulocyte, esterase activities and cell sizes were measured. When U-937 cells were treated with $0.2{\mu}M$ and $0.15{\mu}M$ of hypericin, the .alpha.-naphthyl acetate esterase activity was increased by 38.4% and 48.1%, respectively, but naphthol AS-D chloroacetate esterase activity was not influenced. The size of hypericin-treated cells in terms of cell mass was larger than that observed in untreated cells as determined by flow cytometry. Protein kinase C (PKC) inhibitor, NA-382, decreased the NBT reducing activity of hypericin, whereas a cAMP-dependent protein kinase A (PKA) inhibitor, H-89, did not show any influence on the differentiations. These results indicate that hypericin triggers differentiation toward monocyte/macrophage lineage by PKC stimulation.

  • PDF

Phosphorylation as a Signal Transduction Pathway Related with N-channel Inactivation in Rat Sympathetic Neurons (N형 칼슘통로 비활성화와 연계된 세포 신호전달 체계로서의 인산화과정)

  • Lim Wonil;Goo Yong Sook
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.220-227
    • /
    • 2004
  • In N-type $Ca^{2+}$ channels, the mechanism of inactivation - decline of inward current during a depolarizing voltage step- is still controversial between voltage-dependent inactivation and $Ca^{2+}$ -dependent inactivation. In the previous paper we demonstrated that fast component of inactivation of N-type calcium channels does not involve classic $Ca^{2+}$ -dependent mechanism and the slowly inactivating component could result from a $Ca^{2+}$ -dependent process. However, there should be signal transduction pathway which enhances inactivation no matter what the inactivation mechanism is. We have investigated the effect of phosphorylation on calcium channels of rat sympathetic neurons. Intracellular dialysis with the phosphatase inhibitors okadaic acid markedly enhanced the inactivation. The rapidly inactivating component is N-type calcium current, which is blocked by $\omega$-conotoxin GVIA. Staurosporine, a nonselective protein kinase inhibitor, prevented the action of okadaic acid, suggesting that protein phosphorylation is involved. More specifically lavendustin C, inhibitor of CaM kinase II, prevented the action of okadaic acid, suggesting that calmodulin dependent pathway is involved in inactivation process. It is not certain to this point whether phosphorylation process is inactivation itself. Molecular biological research regarding binding site should be followed to address the question of how the divalent cation binding site is related to phoshorylation process.

  • PDF

The Relationship between Intracellular Protein Kinase C Concentration and Invasiveness in U-87 Malignant Glioma Cells (교모세포종 세포주 U-87에서 세포내 PKC 농도와 종양침습성과의 상관 관계)

  • Ji, Cheol;Cho, Kyung-Keun;Lee, Kyung Jin;Park, Sung Chan;Cho, Jung Ki;Kang, Joon Ki;Choi, Chang Rak
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.3
    • /
    • pp.263-271
    • /
    • 2001
  • Objective : Glioblastomas, the most common type of primary brain tumors, are highly invasive and cause massive tissue destruction at both the tumor invading edges and in areas that are not in direct contact with glioma cells. As a result, patients with high-grade gliomas are faced with a poor prognosis. Such grim statistics emphasize the need to better understand the mechanisms that underlie glioma invasion, as these may lead to the identification of novel targets in the therapy of high grade gliomas. Protein kinase C(PKC) is a family of serine/threonine kinases and an important signal transduction enzyme that conveys signals generated by ligand-receptor interaction at the cell surface to the nucleus. PKC appears to be critical in regulating many aspects of glioma biology. The purpose of this study was to assess accurately the role of PKC in the invasion regulation of human gliomas based on hypothesis that protein kinase C(PKC) is functional in the process of glial tumor cell invasion. Method : To test this hypothesis, U-87 malignant glioma cell line intracellular PKC levels were up and down regulated and their invasiveness was tested. Intracellular PKC level was characterized using PKC activity assays. Invasion assays including barrier migration and spheroid confrontation were used to study the relationship between PKC concentration and invasiveness. Result : The cell line which were treated by PKC inhibitor tamoxifen and hypericin exhibited decreased PKC activity and decreased invasive abilities dose dependently both in matrigel invasion assay and tumor spheroid fetal rat brain aggregates(FRBA) confrontation assay. However, the cell line that was treated by PKC activator 12-O-tetradecanylphorbol-13acetate(TPA) did not exhibit increases in either PKC activity or invasive ability. Conclusion : These studies suggest that PKC may be a useful molecular target for the chemotherapy of glioblastoma and other malignancies and that a therapeutic approach based on the ability of PKC inhibitors may be helpful in preventing invasion.

  • PDF

Regulation of Taurine Transporter Activity by Glucocorticoid Hormone

  • Kim, Ha-Won;Shim, Mi-Ja;Kim, Won-Bae;Kim, Byong-Kak
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.527-532
    • /
    • 1995
  • Human taurine transporter has 12 transmembrane domains and its molecular weight is 69.6 kDa. The long cytoplasmic carboxy and amino termini might function as regulatory attachment sites for other proteins. Six potential protein kinase C phosphorylation sites have been reported in human taurine transporter. In this report, we studied the effects of phorbol 12-myristate 13-acetate (PMA) and glucocorticoid hormone on taurine transportation in the RAW 264.7, mouse macrophage cell line. When the cells were incubated with $[^{3}H]taurine$ in the presence or absence of $Na^+$ ion for 40 min at $37^{\circ}C$, the [$[^{3}H]taurine$ uptake rate was 780-times higher in the $Na^{+}-containing$ buffer than in the $Na^{+}-deficient$ buffer, indicating that this cell line expresses taurine transporter protein on the cell surface. THP1, a human promonocyte cell line, also showed a similar property. The $[^{3}H]taurine$ uptake rate was not influenced by the inflammatory inducing cytokines such as interleukin-1, gamma-interferon or interleukin-1+gamma-interferon, but was decreased by the PMA in the RAW 264.7 cell line. This suggests that activation of protein kinase C inhibits taurine transporter activity directly or indirectly. The inhibition of $[^{3}H]taurine$ uptake by PMA was time-dependent. Maximal inhibition occurred in one hr stimulation with PMA Increasing the treatment time beyond one h reduced the $[^{3}H]taurine$ uptake inhibition due to the depletion or inactivation of protein kinase C. The cell line also showed concentration-dependent $[^{3}H]taurine$ uptake under PMA stimulation. The phorbol-ester caused 23% inhibition at the concentration of 1 ${\mu}m$ PMA. The inhibition was significant even at a concentration as low as 10 nM PMA The reduced $[^{3}H]taurine$ uptake could be recovered by treatment with glucocorticosteroid hormone. Dexamethasone led to recover of the reduced taurine uptake induced by phorbol-ester, recovering maximally after one hr. This may suggest that macrophage cells require higher taurine concentration in a stressed state, for the secretion of glucocorticoid hormone is increased by hypothalamo-pituitary-adrenocortical (HPA) axis activation in the blood stream.

  • PDF

Testosterone secretion is affected by receptor tyrosine kinase c-Kit and anoctamin 1 activation in mouse Leydig cells

  • Ko, Eun-A;Woo, Min Seok;Kang, Dawon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.87-95
    • /
    • 2022
  • Receptor tyrosine kinase c-Kit, a marker found on interstitial cells of Cajal (ICCs), is expressed in Leydig cells, which are testicular interstitial cells. The expression of other ICC markers has not yet been reported. In this study, we investigated the expression of c-Kit and anoctamin 1 (ANO1), another ICC marker, in mouse testes. In addition, the relationship between c-Kit and ANO1 expression and Leydig cell function was investigated. We observed that c-Kit and ANO1 were predominantly expressed in mouse Leydig cells. The mRNA and protein of c-Kit and ANO1 were expressed in TM3, a mouse Leydig cell line. LH induced an increase in intracellular Ca2+ concentration, membrane depolarization, and testosterone secretion, whereas these signals were inhibited in the presence of c-Kit and ANO1 inhibitors. These results show that c-Kit and ANO1 are expressed in Leydig cells and are involved in testosterone secretion. Our findings suggest that Leydig cells may act as ICCs in testosterone secretion.

Identification of Radiation-Sensitive Gene in U937 Cell by using cDNA-Chip Composed of Human Cancer Related Gene (U937 세포에서 발암관련 유전자들로 구성된 DNA chip을 이용한 방사선 감수성 유전자들의 선발)

  • 김종수;김인규;강경선;윤병수
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.1
    • /
    • pp.54-59
    • /
    • 2002
  • We have used cDNA microarray hybridization to identify gene regulated in response to gamma-irradiation in U-937 cell. The cDNA-chip was composed entirely of 1,000 human cancer related gene including apoptosis and angiogenesis etc. In gamma-irradiated U-937 cell, highly charged protein, ribosomal protein L32, four and a half LIM domains 3, lipocalin 2 (oncogene 24p3) and interleukin 15, ataxia telangiectasia mutated (includes complementation groups A, C and D) genes showed increased level of its transcription, and cell division cycle 25A, dihydrofolate reductase, topoisomerase (DNA) II beta(180kD), kinase suppressor of ras and strarigin genes showed reduced level of its transcription compared to untreated U-937 cell. The significant change of level of transcription was not found in well-known ionizing radiation(IR)-responsive gene, such as transcription factor TP53 and p53 related gene, except ataxia telangiectasia mutated gene.

  • PDF