• Title/Summary/Keyword: protein kinase C

Search Result 1,404, Processing Time 0.029 seconds

Involvement of Protein Tyrosine Kinase in Stimulated Neutrophil Responses by Sodium Fluoride

  • Chung, Ki-Kwang;Han, Eun-Sook;Lee, Chung-Soo
    • BMB Reports
    • /
    • v.30 no.2
    • /
    • pp.89-94
    • /
    • 1997
  • In this study, during the activation of neutrophil responses by sodium fluoride. involvement of protein tyrosine kinase was studied. Respiratory burst lysosomal enzyme release and elevation of $[Ca^{2+}]_i$stimulated by sodium fluoride in neutrophils were inhibited by protein kinase inhibitors, genistein and tyrphostin. The inhibitory effect of genistein and tyrphostin on superoxide and $H_{2}O_{2}$ production was less than that of protein kinase C inhibitors, staurosporine and H-7. Staurosporine and H-7 had little or no effect on the release of myeloperoxidase and acid phosphatase stimulated by sodium fluoride. EGTA and verapamil inhibited the elevation of $[Ca^{2+}]_i$ evoked by sodium fluoride. The inhibitory effect of staurosporine on the elevation of $[Ca^{2+}]_i$ was less than that of genistein. Phorbol 12-myristate 13-acetate (PMA)-stimulated superoxide production, which is sensitive to staurosporine, was further enhanced by genistein, whereas the stimulatory action of PMA on myeloperoxidase release was inhibited by genistein. A pretreatment of neutrophils with PMA signifcantly attenuated sodium fluoride-evoked elevation of $[Ca^{2+}]_i$ These results suggest that protein tyrosine kinase may be involved in the activation process of neutrophil responses due to direct stimulation of guanine nucleotide regulatory proteins. In neutrophil responses, PMA-stimulated neutrophils appear to show a different type of inhibition of protein tyrosine kinase.

  • PDF

Endosulfan Induces CYP1A1 Expression Mediated through Aryl Hydrocarbon Receptor Signal Transduction by Protein Kinase C

  • Han, Eun Hee;Kim, Hyung Gyun;Lee, Eun Ji;Jeong, Hye Gwang
    • Toxicological Research
    • /
    • v.31 no.4
    • /
    • pp.339-345
    • /
    • 2015
  • CYP1A1 is a phase I xenobiotic-metabolizing enzyme whose expression is mainly driven by AhR. Endosulfan is an organochlorine pesticide used agriculturally for a wide range of crops. In this study, we investigated the effect of endosulfan on CYP1A1 expression and regulation. Endosulfan significantly increased CYP1A1 enzyme activity as well as mRNA and protein levels. In addition, endosulfan markedly induced XRE transcriptional activity. CH-223191, an AhR antagonist, blocked the endosulfan-induced increase in CYP1A1 mRNA and protein expression. Moreover, endosulfan did not induce CYP1A1 gene expression in AhR-deficient mutant cells. Furthermore, endosulfan enhanced the phosphorylation of calcium calmodulin (CaM)-dependent protein kinase (CaMK) and protein kinase C (PKC). In conclusion, endosulfan-induced up-regulation of CYP1A1 is associated with AhR activation, which may be mediated by PKC-dependent pathways.

Bradykinin-Mediated Stimulation of Phospholipase D in Rabbit Kidney Proximal Tubule Cells

  • Park, Kyung-Hyup;Jung, Jee-Chang;Chung, Sung-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 1994
  • The present study was undertaken to demonstrate whether or not bradykinin activates a phospholipase D in rabbit kidney proximal tubule cells. By measuring the formation of [$^3$H]phosphatidic acid and [$^3$H]phosphatidylethanol we could elucidate the direct stimulation of phospholipase D by bradykinin. Bradykinin leads to a rapid increase in [$^3$H]phosphatidic acid and [$^3$H]diacylglycerol, and [$^3$H]phosphatidic acid formation preceded the formation of [$^3$H]diacylglycerol. This result suggests that some phosphatidic acid seems to be formed directly from phosphatidylcholine by the action of phospholipase D, not from diacylglycerol by the action of diacylglycerol kinase. In addition, the other mechanisms by which phospholipase D is activated was examined. We have found that phospholipase D was activated and regulated by extracellular calcium ion and pertussis toxin-insensitive G protein, respectively. It has also been shown that bradykinin may activate phospholipase D through protein kinase C-dependent pathway. In conclusion, we are now, for the first time, strongly suggesting that bradykinin-induced activation of phospholipase D in the rabbit kidney proximal tubule cells is mediated by a pertussis toxin-insensitive G protein and is dependent of protein kinase C.

  • PDF

Studies on the Differentiation of Skeletal Muscle Cells in vitro:Protein Kinase C in the Differentiation of Skeletal Muscle Cells (근세포 분화에 관한 연구 : 근세포 분화에 있어서 Protein Kinase C)

  • 최원철;김한도;김정락
    • The Korean Journal of Zoology
    • /
    • v.34 no.2
    • /
    • pp.131-141
    • /
    • 1991
  • Treating 12-O-tetradecanoyIphorboI 13-acetate -TPA) or platelet~derived growth factor(PDGF), the signal transduction of protein Idnase C (PKC) is occurred by the phosphoryladon. However the targeting proteins phosphorylated by PKC were found to be different proteins in molecular weights when WA or PDGF wa~ treated to the myoblast. In the WA-treated myoblast cells, the protein of Mr. 20 I(d was phosphorylated. In the PDGF-treated cells, the protein of Mr. 40 Kd was phosphrylated, while the protein of Mr. 20 Kd which phosphorylated in the WA-treatment was dephosphorylated. These results indicate that not only WA and PDGF &e different in activating the signal transduction pathways, but also they may involve in the down reguladon of PI(C during the long-term treatment But PDGF gave rise more rapidly down reguladon than in the case of WA. Using immunocytochemical approach, two disdnct PKC isozymes, PKC II and PKC III, have been localized in cytoplasm and both cytoplasm and nuclsolus, respectively. Ther'efore, the expression of two types of PKC in the myoblast suggests that the isozymes of PKC may involve in each different pathway of signal transduction or down-reguladon.

  • PDF

concentration of cyclic AMP and activity of cyclic AMP-dependent Protein Kinase in Chestnut Weevil, Curculio dentipes (밤바구미(Curculiodentipes) 유충의 cyclic AMP 농도와 CAMP-dependent protein kinase 활성도 변화)

  • 류진수;김유경이경로
    • The Korean Journal of Zoology
    • /
    • v.37 no.2
    • /
    • pp.222-231
    • /
    • 1994
  • 밤바구미 유충기의 whole body로부터 cyclic AMP(CAMP)를 추출하여 농도 변화를 측정하였고 cyclic AMP-dependent protein kinase(PKA)를 부분 정제하여 활성도 변화를 조사하여 CAMP 농도와 PKA 활성도와의 소장관계를 비교하였다 CAMP 농도와 PKA 활성도는 HPLC와 liquid scintillation counter를 이용하여 측정하였다 CAMP 농도는 밤바구미 유충에서 월동전에 0.57 UMlg로 가장 높았고, 월동중에 0. 14 UMIS로 감소하였다가 월동후에 0.29 UMlg로 증가하였다 또한 PKA 활성도는 월동전에 2.56unit/mg로 가장 높았으며, 월동중에 0.62 unit/mg로 감소하다가 월동후에 07 unit/mg로 다시 증가하여 CAMP 농도 변화와 유사한 경향을 나타내었다. 이는 월동전에 휴면에 대비하여 최대의 취식으로 지방체 축적이 가장 많았고, 월동중에는 지방체의 소비가 증대되.기 때문에 감소하였다가, 월동후 휴면 종결과 유충-번데기 탈피를 준비하기 위해 'CAMP 농도와 PKA 활성도는 다시 증가하였다.

  • PDF

Kinetic Study on Dephosphorylation of Myelin Basic Protein by Some Protein Phosphates

  • 황인성;김진한;최명운
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.428-432
    • /
    • 1997
  • The dephosphorylation specificity of protein phosphatase 2A (PP2A), calcineurin (PP2B) and protein phosphatase 2C (PP2C) were studied in vitro using myelin basic protein (MBP) as a model substrate which was fully phosphorylated at multiple sites by protein kinase C (PKC) or cyclic AMP-dependent protein kinase (PKA). In order to determine the site specificity of phosphates in myelin basic protein, the protein was digested with trypsin and the radioactive phosphopeptide fragments were isolated by high performance liquid chromatography (HPLC) on reversed-phase column. Subsequent analysis and/or sequential manual Edman degradation of the purified phosphopeptides revealed that Thr-65 and Ser-115 were most extensively phophorylated by PKA and Ser-55 by PKC. For the dephosphorylation kinetics, the phosphorylated MBP was treated with calcineurin or PP2C with various time intervals and the reaction was terminated by direct tryptic digest. Both Thr-65 and Ser-115 residues were dephosphorylated more rapidly than any other ones by phosphatases. However it can be differentiated further by first-order kinetics that the PP2B dephosphorylated both Thr-65 and Ser-115 with almost same manner, whereas PP2C dephosphorylated somewhat preferentially the Ser-115.

Effects of Staurosporine and Genistein on Superoxide Generation and Degranulation in PMA- or C5a-Activated Neutrophils

  • Ha, Sung-Heon;Lee, Chung-Soo
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.210-215
    • /
    • 1995
  • Effects of staurosporine, genistein and pertussis toxin on PMA-induced superoxide generation and degranulation in neutrophils were investigated. Their effects were also examined in C5a-stimulated superoxide generation. PMA-induced superoxide generation was inhibited by staurosporine but was not affected by pertussis toxin. Genistein enhanced the stimulatory effect of PMA in a dose dependent fashion. C5a-induced superoxide generation was inhibited by staurosporine, genistein and pertussis toxin. An NADPH oxidase system of resting neutrophils was activated by PMA, and the stimulatory effect of PMA was inhibited by staurosporine but was not affected genistein and pertussis toxin. The activity of NADPH oxidase in the membrane fraction of PMA-activated neutrophils was not affected by staurosporine and genistein. PMA-induced acid phosphatase release was inhibited by staurosporine and genistein, whereas the effect of pertussis toxin was not detected. These results suggest' that the role of protein tyrosine kinase in neutrophil activation mediated by direct activation of protein kinase C may be different from receptor-mediated activation. The action of protein kinase C on the respiratory burst might be affected by the change of protein tyrosine kinase activity.

  • PDF

The Catalytic Subunit of Protein Kinase A Interacts with Testis-Brain RNA-Binding Protein (TB-RBP)

  • Ju, Hyun-Hee;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.305-311
    • /
    • 2007
  • cAMP-dependent protein kinase A (PKA) is the best-characterized protein kinases and has served as a model of the structure and regulation of cAMP-binding protein as well as of protein kinases. To determine the function of PKA in development, we employed the yeast two-hybrid system to screen for catalytic subunit of PKA $(C\alpha)$ interacting partners in a cDNA library from mouse embryo. A Testis-brain RNA-binding protein (TB-RBP), specifically bound to $C\alpha$. This interaction was verified by several biochemical analysis. Our findings indicate that $C\alpha$ can modulate nucleic acid binding proteins of TB-RBP and provide insights into the diverse role of PKA.

  • PDF

The Inhibitory Potency of Hesperidin on Protein Kinase C Activity Using a Biochip (바이오칩을 이용한 Protein Kinase C의 활성에 대한 헤스페리딘의 저해 효과)

  • Kang, Jung Ae;Rho, Jong Kook;Choi, Mi Hee;Jung, Young Jin;Park, Sang Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • Protein kinases are the most important drug targets for the treatment of numerous diseases. The involvement of protein kinase C (PKC) in many biological processes such as development, memory, cell differentiation, and proliferation has been demonstrated. PKC is recognized as an important player in carcinogenesis. Thus, a variety of PKC inhibitors have been investigated. Among them, flavonoids have been demonstrated to affect the activity of many mammalian in vitro enzyme systems. The recent investigation was performed to evaluate the inhibitory effects of hesperidin, which is a flavonoid, on the proliferation and carcinogenesis of many cancers. In this study, an efficient kinase assay based on a biochip using radio-phosphorylation was established and performed for an examination of the inhibitory effects of hesperidin on PKC activity at different concentrations of 50, 200, 500 nM. It was found that hesperidin shows inhibitory potency on PKC, and that the biochip can be used to rapidly screen kinase inhibitors resulting in the therapeutic agents.

Effect of Phorbol ester on $K^+$channel in an G292 osteoblast-like cell (G292 세포에서 $K^+$통로에 대한 phorbol ester의 효과)

  • Kim, Mi-Kyung;Park, Su-Byung
    • The korean journal of orthodontics
    • /
    • v.32 no.3 s.92
    • /
    • pp.227-234
    • /
    • 2002
  • In order to investigate the action mechanism of protein kinase C on $K^+$ channel in osteoblastic cell, effects of phorbol 12, 13-dibutyrate on human osteoblast-like cells (G292) were studied by patch clamp technique with cell-attacked configuration. 111 this experiment, 45pS ion channel was dominant in G292 cell line according to their approximate conductances in symmetrical 140mM KCl saline at holding potential of 60mV. In torrent-voltage relationship, reversal potential was 5.5mV at the condition of potassium enriched saline in the pipette and -27 mV at the condition of standard extracellular saline In the pipette. Phorbol 12, 13-dibutyrate 10nM increased the open probability of 45pS channel and staurosporine, an inhibitor of protein kinase C, suppressed this effect. Phorbol 12,13-dibutyrate moved the reversal potential of 45pS channel to more negative potential and increased the single channel current at the same membrame potential. In order to check the activation of protein kinase C in G292 cell by phorbol 12,13-dibutyrate, western blot of protein kinase C was performed. Phorbol 12,13-dibutyrate $0.1{\mu}M$ translocated protein kinase C from cellular compartment to membrane compartment of the cell. These findings suggest that phorbol 12,13-dibutyrate, one of phorbol esters, activate 45pS channel In G292 cell and affect cell membrane potential, that regulate cellular function.