• Title/Summary/Keyword: protein transduction domain

Search Result 99, Processing Time 0.038 seconds

Generation and Characterization of Cell-Permeable Greem Fluorescent Protein Mediated by the Basic Domain of Human Immunodeficiency Virus Type 1 Tat

  • Park, Jin-Seu;Kim, Kyeong-Ae;Ryu, Ji-Yoon;Choi, Eui-Yul;Lee, Kil-Soo;Choi, Soo-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.797-804
    • /
    • 2000
  • The human immunodeficiency virus type 1 (HIV-1) Tat is one of the viral gene products essential for HIV replication. The exogenous Tat protein is transduced through the plasma membrane and then accumulated in a cell. The basic domain of the Tat protein, which is rich in arginine and lysine residues and called the protein transduction domain (PTD), has been identified to be responsible for this transduction activity. To better understand the nature of the transduction mediated by this highly basic domain of HIV-1 Tat, the Green Fluorescent Protein (GFP) was expressed and purified as a fusion protein with a peptide derived from the HIV-1 Tat basic domain in Escherichia coli. The transduction of Tat-GFP into mammalian cells was then determined by a Western blot analysis and fluorescence microscopy. The cells treated with Tat-GFP exhibited dose- and time-dependent increases in their intracellular level of the protein. the effective transduction of denatured Tat-GFP into both the nucleus and the cytoplasm of mammalian cells was also demonstrated, thereby indicating that the unfolding of the transduced protein is required for efficient transduction. Accordingly, the availability of recombinant Tat-GFP can facilitate the simple and specific identification of the protein transduction mediated by the HIV-1 Tat basic domain in living cells either by fluorescence microscopy or by a fluorescence-activated cell sorter analysis.

  • PDF

Effective Expression of Recombinant Baculovirus Vector Systems (재조합 베큘로바이러스벡터의 효과적 발현)

  • Kim, Ji-Young;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.977-980
    • /
    • 2014
  • A baculovirus vector systems including genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD) were constructed. These recombinant baculovirus vector systems were transfected into human foreskin fibroblast cells and various tissues and investigated gene transfer and expression of these vector systems with control vectors. From the study, these recombinant baculovirus vector systems were more effective and safe than control vector in view of gene transfer and expression.

  • PDF

Novel Construction of Recombinant Baculovirus Vector System (재조합 베큘로바이러스 벡터 시스템의 신 구축)

  • Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.994-996
    • /
    • 2012
  • We constructed novel recombinant baculovirus vector system. This vector system contained coding genes for polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD). We compared efficacy and rate of expression of this novel recombinant baculovirus vector system with other control vector system. From this result, we confirmed that this novel recombinant baculovirus vector system was superior to other control vector system.

  • PDF

Characteristics of HIV-Tat Protein Transduction Domain

  • Yoon Jong-Sub;Jung Yong-Tae;Hong Seong-Karp;Kim Sun-Hwa;Shin Min-Chul;Lee Dong-Gun;Shin Wan-Shik;Min Woo-Sung;Paik Soon-Young
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.328-335
    • /
    • 2004
  • The human immunodeficiency virus type 1 (HIV-I) Tat protein transduction domain (PTD), which con­tains rich arginine and lysine residues, is responsible for the highly efficient transduction of protein through the plasma membrane. In addition, it can be secreted from infected cells and has the ability to enter neighboring cells. When the PTD of Tat is fused to proteins and exogenously added to cells, the fusion protein can cross plasma membranes. Recent reports indicate that the endogenously expressed Tat fusion protein can demonstrate biodistribution of several proteins. However, intercellular transport and protein transduction have not been observed in some studies. Therefore, this study exam­ined the intercellular transport and protein transduction of the Tat protein. The results showed no evi­dence of intercellular transport (biodistribution) in a cell culture. Instead, the Tat fusion peptides were found to have a significant effect on the transduction and intercellular localization properties. This sug­gests that the HIV-1 PTD passes through the plasma membrane in one direction.

Efficacy of Gene Transfer of Recombinant Baculovirus Vector

  • Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.1006-1008
    • /
    • 2013
  • A novel recombinant baculovirus vector system containing coding genes for polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD) was constructed. We applied this recombinant baculovirus vector into cells and murine tissues and compared efficacy of gene transfer and expression of this recombinant baculovirus vector system with control vector system. From this result, we confirmed that this novel recombinant baculovirus vector system was very effective than control vector system.

  • PDF

Comparison of Recombinant Baculovirus Vector Systems and Control Vector System (재조합 베큘로바이러스벡터와 대조 벡터의 비교)

  • Kim, Ji-Young;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.954-957
    • /
    • 2015
  • A recombinant baculovirus vector systems were composed of genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD). These recombinant baculovirus vector system were transfected into various cell lines and tissues and confirmed gene transfer and expression of these vector systems with only control vector system. From the result, gene transfer and gene expression of recombinant baculovirus vector systems were superior in terms of efficacy and safety than in the control vector system.

  • PDF

Gene Transfer and Gene Expression of Novel Recombinant Baculovirus Vector System (새로운 재조합 베큘로바이러스벡터의 유전자전이와 유전자발현)

  • Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.946-948
    • /
    • 2013
  • Several baculovirus vector systems recombined with coding genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD) were constructed. These recombinant baculovirus vector systems were applied into human foreskin fibroblast cells and compared the effects of gene transfer and gene expression of these recombinant baculovirus vector systems with control vector system. From this study, it showed that these novel recombinant baculovirus vector systems were superior efficacy to control vector system in view of gene transfer and gene expression.

  • PDF

Gene Transfer and Expression of Newly Reconstructed Baculovirus Vectors (재조성된 베큘로바이러스 벡터의 유전자 전이와 발현)

  • Kim, Ji-Young;Kim, Hyun Joo;Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.923-926
    • /
    • 2016
  • Baculovirus vectors were reconstructed using cytomegalovirus (CMV) promoter, polyhedron promoter, vesicular stomatitis virus G (VSVG), enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD) genes. These reconstructed vector was transfected into various cell lines and tissues. We compared this reconstructed vector with other control vectors in view of gene transfer and gene expression. In conclusion, we confirmed that gene transfer and expression of these reconstructed vectors was higher efficient than any other control vector.

  • PDF

Efficacy of Gene Transfer and Expression of Recombinanat Baculovirus Vector System (재조합 베큘로바이러스벡터의 유전자전달과 발현의 효과)

  • Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.813-815
    • /
    • 2014
  • Novel baculovirus vector systems including genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD) were constructed. These recombinant baculovirus vector systems were transfected into diverse cells of 293T, HepG2, HFF, and Hur7 cells and compared the effects of gene transfer and expression of these vector systems with control vector. From the result, we confirmed that these recombinant baculovirus vector systems were more excellent than control vector in efficacy of gene transfer and expression.

  • PDF

A Novel Possibility of Recombinant Baculovirus Vector (재조합 베큘로바이러스 벡터의 새로운 가능성)

  • Kim, Ji-Young;Kim, Hyun Joo;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.838-841
    • /
    • 2015
  • Recombinant baculovirus vector is composed of genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD). This recombinant baculovirus vector was transfected into cell lines and tissues and then found out a novel possibility in view of gene transfer and gene expression in comparison to other vector systems. Efficacy of gene transfer and gene expression of this recombinant baculovirus vector was higher than any other vector system.

  • PDF