• Title/Summary/Keyword: protoplast

Search Result 455, Processing Time 0.026 seconds

Ptotoplast Formation and Comparison of Phosphatase Activity between Intact Cell and Protoplast in Sccharomyces uvarum. (Sccharomyces uvarum의 protoplast 형성 및 intact cell과 protoplast의 phosphatase 활성도 비교)

  • Lee, Ki-Sung;Kim, Young-Ho
    • The Journal of Natural Sciences
    • /
    • v.11 no.1
    • /
    • pp.55-63
    • /
    • 1999
  • In this study, the stabilizer, PH and lysis method for optimum condition of S. uvarum protoplast formation were investigated, and also enzyme activity and poly-P formation of intact cell and protoplast mere compared. Upon protoplast formation, incubation time of 5 hours in snail gut enzyme and 3 hours in drisielase were reignited. 0.8 Mole mannitol and 6 mole KCl were apt to protoplast formation. Protoplast was contained less 22-27 percentage in ALPase, 4-15 percentage in ACPase than intact cell. Accumulation of inorganic polyphosphate did not increase significently in protoplast compared with intact cell.

  • PDF

The Conidial Protoplast Fusion of Cellulolytic Fungus Trichoderma koningii (섬유소 분해균인 trichoderma koningii의 분생자 원형질체 융합에 관하여)

  • 홍순우;하영칠;박희문
    • Korean Journal of Microbiology
    • /
    • v.22 no.4
    • /
    • pp.207-214
    • /
    • 1984
  • Improved methods for the isolation and purification of conidial protoplast were investigated and conidial proplast from auxotrophic mutants were fused. The reaction time for isolation of protoplasts from the swollen condiospores preincubated in liquid minimal medium supplimented with 2-deoxy-D-glucose was shorten by reaction with mixture of 2% driselase and 2% ${\beta}-glucuronidase$ (1:1). The conidial protoplast could be highly purified by using 5% Ficoll 400 as a centrifugation medium. Nucleus of the conidial protoplast was stained with Giemsa stain and the conidial protoplast had one nucleus. It was also confirmed that the conidial protoplast was true protoplast with no cell wall remnant at the outside of plasma menbrane. Fusion frequencies of the conidial protoplast from auxotrophic mutants ranged from $3.4{\times}10^{-1}\;to\;4.9{\times}10^{-1}$. These values were higher than those of mycelial protoplast by a factor of 5 to 28.

  • PDF

The protoplast formation, regeneration and fusion of coryneform bacteria (Coryneform bacteria의 原形質體 形成, 再生 및 融合에 관한 硏究)

  • Shin, Myung-Gyo;Lee, Se-Yong;Lim, Bun-Sam;Chun, Moon-Jin
    • Korean Journal of Microbiology
    • /
    • v.22 no.3
    • /
    • pp.175-181
    • /
    • 1984
  • In order to develope a protoplast fusion system for industrial coryneform bacteria, the optimum conditions for the formation and regeneration of progoplast were examined for Brevibacterium flavum and Corynebacterium glutamicum and the protoplast fusion was performed. For the formation of the protoplast of B. flavum and C. glutamicum, the optimum time for penicillin G. treatment to obtain protoplast was mid-exponential growth phase ($O.D_{580}=0.6-0.8,\;8.0{\times}10^7-1.0{\times}10^8cell/ml$). At the optimum conditions (0.3units/ml penicillin G and $400{\mu}g/ml$ lysoyme for treatement), frequencies of protoplast formation and protoplast regeneration were 99% and 25%, respectively. Protoplast regeneration frequency was highest under the optimum conditions for the protoplast formation. Addition of 25mM $Mg^{2+}\;and\;50mM\;Ca^{2+}$ to the regeneration medium further increased the regeneration frequencies. The protoplast fusion frequencies of B. flavum and C. glutamicum in intraspecies fusion were $1.0{\times}10^{-8}\;and\;7.8{\times}10^{-4}$, of the regenerated protoplast respectively, when 33% of PEG (polythylene glycol) 6,000 was used as the fusing agent.

  • PDF

Studies on Protoplast Formation of Trichoderma spp. (Trichoderma 속의 제균종에 대한 protoplast formation에 관한 연구)

  • Sung, Yun-Sub;An, Won-Gun;Ju, Woo-Hong;Lee, Jae-Dong
    • The Korean Journal of Mycology
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 1992
  • This research was focused on investigation of the general condition for protoplast formation of Trichoderma speues. for protoplast formation, the mycelia cultured in YM medium were collected from each growth phase and were treated with the Iytic enzymes. This procedure was carried out by all strains. The most optimal conditions of NOVOZYM 234 and DRISELASE were determined by T. saturnisporum IAM 12535 and T. longibruchiatum IBM 13107, respectively. The effect of osmotic stabilizers appeared ${KCI}>(NH_4)_2{SO_4}>NaCl>mannitol>{MgSO}_4$ and the optimal concentration of each osmotic stabilizer wns determined by 0.6-0.9 M. The optimal condition of DRISELASE for protoplast formation ; optimal pH 5.0, optimal concentration, 2%, optimal reaction time, 4 hours, and optimal temperature, $30^{\circ}C$. The optimal condition of NOVOZYM 234 for protoplast formation ; optimal pH 5.5, optimal concentration 1%, optimal reaction time 3 hours, and optimal temperature $30^{\circ}C$. The optimal culture period of mycelia for protoplast formation was between the initial and the middle exponential phase. Generally, DUSELASE was more effective than NOVOZYM 234 on protoplast formation except for T. longibruchiatum IAM 13107 and T. viride IAM 5141.

  • PDF

Formation of Protoplast from Trichoderma koningii (Trichoderma koningii의 Protoplast 생성에 관하여)

  • 조남진;이영하;홍순우
    • Korean Journal of Microbiology
    • /
    • v.19 no.4
    • /
    • pp.186-191
    • /
    • 1981
  • Protoplast production from Trichoderma koningii ATCC 26113 was investigated for the purpose of doing basic and applied researches by protoplast fusion of the cellulolytic filamentous fungus. High yields of protoplast were obtained by using the 18hr. old mycelia treated with the lytic enzyme Driselase of Kyowa Fermentation Co., Japan, in 0.6M $MgSO_4\;or\;(NH_4)_2SO_4$ as osmotic stabilizers. The optimum temeprature of mycelial digestion was about $28^{\circ}C$ and the number of protoplast increased rapidly after 3hr. digestion. Protoplasts produced at different periods showed distinct morphological heterogeneities in the whole size and the size of vacuole.

  • PDF

Studies on the Protoplast Fusion between Lactobacillus casei and Lactobacillus delbrueckii (Lactobacillus casei와 Lactobacillus delbrueckii간의 Protoplast 융합에 관한 연구)

  • 전홍기;김미경;백형석
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.6-13
    • /
    • 1992
  • - Protoplast fusion between lincomycin resistant Lactobacillus casei KCTC 1121 and rifarnpicin resistant Lactobacillus delbrueckii JK-414 was attempted to obtain the improved strains. Protoplasts of L. casei and L. delbrueckii were produced by mutanolysin digestion at $42^{\circ}C$ for 15 min. L. casei cells were converted to protoplasts by treating with 5 $\mu g$ / m l of mutanolysin in 20 mM HEPES buffer (pH 7.0) containing 0.75 M sucrose at the middle logarithmic growth phase. In case of L. delbrueckii 1.0 M sucrose was used osmotic stabilizer. Regeneration of protoplast in both strains was efficiently accomplished on the regeneration medium containing 10% sucrose, 6 mM $MgC1_2, 6 mM CaC1_2$, and 2.5% gelatin. Protoplast fusion between L. casei and L. delbrueckii was carried out in the presence of 40% of PEG 4,000. The frequency of protoplast fusion was found to be about $3.2\times 10^4$. Acid production of L. casei was better than that of L. delbrueckii. Among fusants, F23 and F35 exhibited excellent lactic acid production. F23 and F24 exhibited the improved proteolysis compared to that of the parent strains and they had twice as much as DNA content of the parents.

  • PDF

Optimum Conditions for the Protoplast Formation of Lactobacillus plantarum and Leuconostoc mesenteroides (Lactobacillus plantarum과 Leuconostoc mesenteroides의 Protoplast 생성의 최적 조건)

  • 전억한;박범식조재선
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.191-199
    • /
    • 1994
  • Protoplasts of both strains were produced by lysozyme digestion at $30^{\circ}C$ for 180min. Both strains were treated with $40{\mu}g$/ml of lysozyme in 30mM Tris-HCl buffer(pH 7.5) containing 10% sucrose at the late logarithmic growth phase. It was found that the efficiency of protoplast formation was high at $30^{\circ}C$ and pH 7.5 by measuring the decrease in absorbance. Optimum concentrations of sucrose $Ca^{2+}, \;Mg^{2+}$ for protoplast formation were determined to be 15%, 20mM and 6mM, respectively. Hydrolysis of cell wall and protoplast formation efficiency for L. plantarum showed better results than those for Leu. mesenteroides. The resistances to antibiotics erythromycin and chloramphenicols were chosen as the selection marker for the fusant between L. plantarum and Leu. mesenteroides. Production phase of protoplast in Leu. mesenteroides was also compared with L. plantarum in this paper.

  • PDF

A System Development of the Protoplast Fusion of Streptomyces coelicolor (Streptomyces coelicolor의 Protoplast Fusion 방법개발)

  • Kim, Jong-Su;Lee, Se-Yong
    • Korean Journal of Microbiology
    • /
    • v.22 no.1
    • /
    • pp.35-40
    • /
    • 1984
  • Attempts were made to optimise protoplast formation and regeneration methods to improve the protoplast fusion frequencies of Streptomyces coelicolor. The yields of protoplast formation and regeneration were varied with different growth phase of the culture. Maximum yields were obtained when cells were taken from the late logarithmic phase. Protoplast formation reached almost its maximum with lysozyme treatment at a concentration of 2mg/ml without any other lytic enzyme. A high frequency of protoplast regeneration was accomplished by overlay method: the method gave 14% recovery of regenerated protoplast versus 1.8% recovery for monolay method. A recombinant frequency of 1.8X10^-2 was obtained by protoplast fusion using PEG 1000(50% w/v).

  • PDF

Protoplast fusion between saccharomyces cerevisiae and candida cariosilignicola (Saccharomyces cerevisiae와 candida cariosilignicola사이의 세포융합에 관한 연구)

  • 이재동;임하선
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.37-43
    • /
    • 1988
  • This research was focused on investigation of the condition for protoplast formation and regeneration of protoplast fusion between Saccharomyces cerevisiae which has fermentation ability and Candida cariosilignicola which can grow at high temperature and utilize methanol. The results obtained were as follows; The highest production was collected in exponential growth phase. Ninety-nine% protoplast formation of C. cariosilignicola was obtained in glycin-NaOH buffer (pH10.0) containing Zymolyase 0.5mg/ml at $35^{\circ}C$ for 1hr incubation. The highest regeneration was produced when protoplast wuwpension containing 0.5% soft agar in buffered 50mM $CaCl_{2}$ was poured as a soft overlay onto 2% agar plates. Equal amuont of protoplast suspension of two strains was mixed and centrifuged. The subsequent pellet was added to 2ml of 35% polyethylene glycol (MW 4,000) containing 50mM $CaCl_{2}$, and incubated at $30^{\circ}C$ for 10min. Then 0.1ml of the suspension of aggregated protoplast was immediately covered with minimal medium and incubated at $40^{\circ}C$ for 5-7 days. As results, $SC_{1}$, $SC_{2}$, and $SC_{3}$ fusants were obtained. The physiological characteristics of fusants produced by protoplast fusion were; $SC_{1}$, and $SC_{2}$ utilized maltose, galactose, methanol, potassium nitrate. $SC_{3}$ utilized all the above materials except galactose.

  • PDF

Studies on the Protoplast Fusion between Lactobacillus bulgaricus and Lactobacillus helveticus (Lactobacillus bulgaricus와 Lactobacillus helveticus간의 Protoplast 융합에 관한 연구)

  • 박현정;백형석;전홍기;송재철
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.2
    • /
    • pp.107-112
    • /
    • 1993
  • The optimal conditions for protoplast fusion between the cells of kanamycin resistant Lactobacillus bulgaricus IFO 13593 and those of lincomycin resistant Lactobacillus helveticus IAM 12090 were investigated in this study. The highest fusion frequency of 9.1*10-4 was obtained when protoplast fusion was carried out for 0.5 min using 40% PEG 4000 solution as a cell fusion stimulant and subsequent post-PEG-incubation was undergone at 30 for 30 min in the PPI medium.

  • PDF