• Title/Summary/Keyword: pulsed MOCVD

Search Result 17, Processing Time 0.031 seconds

Pulsed MOCVD of Cu Seed Layer Using a (hfac)Cu(3,3-dimethyl-1-butene) Source and H2 Reactant (수소 환원기체와 (hfac)Cu(3,3-dimethyl-1-butene) 증착원을 이용한 Pulsed MOCVD로 Cu seed layer 증착 특성에 미치는 영향에 관한 연구)

  • Park Jaebum;Lee Jinhyung;Lee Jaegab
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.619-626
    • /
    • 2004
  • Pulsed metalorganic chemical vapor deposition (MOCVD) of conformal copper seed layers, for the electrodeposition Cu films, has been achieved by an alternating supply of a Cu(I) source and $H_2$ reactant at the deposition temperatures from 50 to $100^{\circ}C$. The Cu thickness increased proportionally to the number of cycles, and the growth rate was in the range from 3.5 to $8.2{\AA}/cycle$, showing the ability to control the nano-scale thickness. As-deposited films show highly smooth surfaces even for films thicker than 100 nm. In addition about a $90\%$ step coverage was obtained inside trenches, with an aspect ratio greater than 30:1. $H_2$, introduced as a reactant gas, can play an active role in achieving highly conformal coating, with increased grain sizes.

ZnO films grown on GaN/sapphire substrates by pulsed laser deposition

  • Suh, Joo-Young;Song, Hoo-Young;Shin, Myoung-Jun;Park, Young-Jin;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.207-207
    • /
    • 2010
  • Both ZnO and GaN have excellent physical properties in optoelectronic devices such as blue light emitting diode (LED), blue laser diode (LD), and ultra-violet (UV) detector. The ZnO/GaN heterostructure, which has a potential to achieve the cost efficient LED technology, has been fabricated by using radio frequency (RF) sputtering, pyrolysis, metal organic chemical vapor deposition (MOCVD), direct current (DC) arc plasmatron, and pulsed laser deposition (PLD) methods. Among them, the PLD system has a benefit to control the composition ratio of the grown film from the mixture target. A 500-nm-thick ZnO film was grown by PLD technique on c-plane GaN/sapphire substrates. The post annealing process was executed at some varied temperature between from $300^{\circ}C$ to $900^{\circ}C$. The morphology and crystal structural properties obtained by using atomic force microscope (AFM) and x-ray diffraction (XRD) showed that the crystal quality of ZnO thin films can be improved as increasing the annealing temperature. We will discuss the post-treatment effect on film quality (uniformity and reliability) of ZnO/GaN heterostructures.

  • PDF

A STUDY ON THE RELATIONSHIP BETWEEN PLASMA CHARACTERISTICS AND FILM PROPERTIES FOR MgO BY PULSED DC MAGNETRON SPUTTERING

  • Nam, Kyung H.;Chung, Yun M.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.35-35
    • /
    • 2001
  • agnesium Oxide (MgO) with a NaCI structure is well known to exhibit high secondary electron emission, excellent high temperature chemical stability, high thermal conductance and electrical insulating properties. For these reason MgO films have been widely used for a buffer layer of high $T_c$ superconducting and a protective layer for AC-plasma display panels to improve discharge characteristics and panel lifetime. Up to now MgO films have been synthesized by lE-beam evaporation, Molecular Beam Epitaxy (MBE) and Metalorganic Chemical Vapor Deposition (MOCVD), however there have been some limitations such as low film density and micro-cracks in films. Therefore magnetron sputtering process were emerged as predominant method to synthesis high density MgO films. In previous works, we designed and manufactured unbalanced magnetron source with high power density for the deposition of high quality MgO films. The magnetron discharges were sustained at the pressure of O.lmtorr with power density of $110W/\textrm{cm}^2$ and the maximum deposition rate was measured at $2.8\mu\textrm{m}/min$ for Cu films. In this study, the syntheses of MgO films were carried out by unbalanced magnetron sputtering with various $O_2$ partial pressure and specially target power densities, duty cycles and frequency using pulsed DC power supply. And also we investigated the plasma states with various $O_2$ partial pressure and pulsed DC conditions by Optical Emission Spectroscopy (OES). In order to confirm the relationships between plasma states and film properties such as microstructure and secondary electron emission coefficient were analyzed by X-Ray Diffraction(XRD), Transmission Electron Microscopy(TEM) and ${\gamma}-Focused$ Ion Beam (${\gamma}-FIB$).

  • PDF

Effect of ${Y_2}{O_3}$Buffer Layer on the Characteristics of Pt/$YMnO_3$/$Y_2$$O_3$/Si(MFIS) Structure (Pt/$YMnO_3$/$Y_2$$O_3$/Si(MFIS) 구조의 특성에 미치는 ${Y_2}{O_3}$층의 영향)

  • Yang, Jeong-Hwan;Sin, Ung-Cheol;Choe, Gyu-Jeong;Choe, Yeong-Sim;Yun, Sun-Gil
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.270-275
    • /
    • 2000
  • The Pt/YMnO$_3$/Y$_2$O$_3$/Si structure for metal/ferroelectric/insulator/semiconductor(MFIS)-FET was fabricated and effect of $Y_2$O$_3$layer on the properties of MFIS structure was investigated. The $Y_2$O$_3$ thin films on p-type Si(111) substrate deposited by Pulsed Laser Deposition were crystallized along (111) orientation irrespective of the deposition temperatures. Ferroelectric YMnO$_3$ thin films deposited directly on p-type Si (111) by MOCVD resulted in Mn deficient layer between Si and YMnO$_3$. However, YMnO$_3$ thin films having good quality and stoichiometric composition can be obtained by adopting $Y_2$O$_3$ buffer layer. The memory window of the $Y_2$O$_3$thin films with YMnO$_3$ film is greater than that of the YMnO$_3$ thin films without $Y_2$O$_3$ film after the annealing at 85$0^{\circ}C$ in vacuum ambient(100mtorr). The memory window is 1.3V at an applied voltage of 5V.

  • PDF

Fabrication of High Power $Al_{0.07}$$Ga_{0.93}$As Laser Diode Array) (고출력 $Al_{0.07}$$Ga_{0.93}$As 레이저 다이오드 어레이 제작)

  • 손노진;박성수;안정작;권오대;계용찬;정지채;최영수;강응철;김재기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.10
    • /
    • pp.43-50
    • /
    • 1995
  • A laser diode(LD) structure consisting of a single 150$\AA$ $Al_{0.07}$Ga$_{0.93}$As quantum well active region operating at ${\lambda}$=809nm, cladded with an AlGaAs graded-index separate confinement heterostructure, has bes been grown by MOCVD. Temperature coefficient of wavelength is approximately 0.2nm $^{\circ}C$ for the diode. The active aperture consists of five emitters separated from each other by means of SiO$_{2}$ deposition and stripe formation, which creates insulating regions that channel the current to 100-$\mu$m-wide stripes placed on 450-$\mu$m centers. From a typical uncoated LD, the output power of 0.8W has been obtained at a 1$\mu$s, 1kHz pulsed current level of 2.0$\AA$, which results in about 64% external quantum efficiency. The threshold current density is 736A/cm$^{2}$ for the case of 500$\mu$m cavity length LD's. The measure of an internal quantum efficiency was 75.8% and the internal loss 4.83$cm^{-1}$ . Finally, 3.1W output power has been obtained at a 1$\mu$s, 1kHz pulsed current level of 9A from the 500$\mu$m-aperture LD array with 460-$\mu$m- cavity length.

  • PDF

Low Temperature Growth of MCN(M=Ti, Hf) Coating Layers by Plasma Enhanced MOCVD and Study on Their Characteristics (플라즈마 보조 유기금속 화학기상 증착법에 의한 MCN(M=Ti, Hf) 코팅막의 저온성장과 그들의 특성연구)

  • Boo, Jin-Hyo;Heo, Cheol-Ho;Cho, Yong-Ki;Yoon, Joo-Sun;Han, Jeon-G.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.563-575
    • /
    • 2006
  • Ti(C,N) films are synthesized by pulsed DC plasma enhanced chemical vapor deposition (PEMOCVD) using metal-organic compounds of tetrakis diethylamide titanium at $200-300^{\circ}C$. To compare plasma parameter, in this study, $H_2$ and $He/H_2$ gases are used as carrier gas. The effect of $N_2\;and\;NH_3$ gases as reactive gas is also evaluated in reduction of C content of the films. Radical formation and ionization behaviors in plasma are analyzed in-situ by optical emission spectroscopy (OES) at various pulsed bias voltages and gas species. He and $H_2$ mixture is very effective in enhancing ionization of radicals, especially for the $N_2$. Ammonia $(NH_3)$ gas also highly reduces the formation of CN radical, thereby decreasing C content of Ti(C, N) films in a great deal. The microhardness of film is obtained to be $1,250\;Hk_{0.01}\;to\;1,760\;Hk_{0.01}$ depending on gas species and bias voltage. Higher hardness can be obtained under the conditions of $H_2\;and\;N_2$ gases as well as bias voltage of 600 V. Hf(C, N) films were also obtained by pulsed DC PEMOCYB from tetrakis diethyl-amide hafnium and $N_2/He-H_2$ mixture. The depositions were carried out at temperature of below $300^{\circ}C$, total chamber pressure of 1 Torr and varying the deposition parameters. Influences of the nitrogen contents in the plasma decreased the growth rate and attributed to amorphous components, to the high carbon content of the film. In XRD analysis the domain lattice plain was (111) direction and the maximum microhardness was observed to be $2,460\;Hk_{0.025}$ for a Hf(C,N) film grown under -600 V and 0.1 flow rate of nitrogen. The optical emission spectra measured during PEMOCVD processes of Hf(C, N) film growth were also discussed. $N_2,\;N_2^+$, H, He, CH, CN radicals and metal species(Hf) were detected and CH, CN radicals that make an important role of total PEMOCVD process increased carbon content.

Synthesis and Structural Properties of YBa2Cu3O7-x Films/ZnO Nanorods on SrTiO3 Substrates

  • Jin, Zhenlan;Park, C.I.;Song, K.J.;Han, S.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.169-169
    • /
    • 2012
  • The high-temperature superconductor YBa2Cu3O7-x (YBCO) have attached attentions because of a high superconducting transition temperature, low surface resistance, high superconducting critical current density (Jc), and superior superconducting capability under magnetic field. Moreover, the Jc of YBCO superconductors can be enhanced by adding impurities to the YBCO films for vortex-pinning. Understanding and controlling pinning centers are key factors to realize high Jc superconductors. We synthesized vertically-aligned ZnO nanorods on SrTiO3 (STO) substrates by catalyst-free metal-organic chemical vapor deposition (MOCVD), and subsequently, deposited YBCO films on the ZnO nanorods/STO templates using pulsed laser deposition (PLD). The various techniques were used to analyze the structural and interfacial properties of the YBCO/ZnO nanorods/STO hybrid structures. SEM, TEM, and XRD measurements demonstrated that YBCO films on ZnO nanorods/STO were well crystallized with the (001) orientation. EXAFS measurements from YBCO/ZnO nanorods/STO at Cu K edge demonstrated that the local structural properties around Cu atoms in YBCO were quite similar to those of YBCO/STO.

  • PDF

Development of High-Power AlGaAs SCH-SQW Laser Diode (고출력 AlGaAs SCH-SQW 레이저 다이오드 개발)

  • 손진승;계용찬;권오대
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.10
    • /
    • pp.27-32
    • /
    • 1993
  • Separate-confinement hetero-structure (SCH) broad area Laser Diodes (LD's) were fabricated from $Al_{0.07}$Ga$_{0.93}$/. As single-quantum-well (SQW) grown by metal organic chemical vapor deposition (MOCVD). Under pulsed operation, we obtained maximum output powers of about 0.8watt/facet and 1.83watt/facet from LD's with 60$\mu$m and 160$\mu$m channel width, respectively, without facet coatings. The differential quantum efficiency of the 60$\mu$m wide LD was about 21.7%/facet and its threshold current density was about 1k [A/cm$^{2}$]. The differential quantum efficiency of the 160$\mu$m wide LD was about 25.6%/facet and its threshold current density was about 1k[A/cm$^{2}$]. The minimum threshold current density of 60$\mu$m wide LD's was 620[A/cm$^{2}$] when the cavity length was 603$\mu$m and the minimum threshold current density of 160$\mu$m wide Ld's was 675[A/cm$^{2}$] when the cavity length was 752$\mu$m. The internal quantum efficienty and the internal loss of both LD's were 92.3% and 18.1cm$^{1}$, respectively.

  • PDF

Progress in the co-evaporation technologies developed for high performance REBa2Cu3O7-δ films and coated conductors

  • Lee, J.W.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • In this review article, we focus on various co-evaporation technologies developed for the fabrication of high performance $REBa_2Cu_3O_{7-{\delta}}$ (RE: Y and Rare earth elements, REBCO) superconducting films. Compared with other manufacturing technologies for REBCO films such as sputtering, pulsed laser deposition (PLD), metal-organic deposition (MOD), and metal organic chemical vapor deposition (MOCVD), the co-evaporation method has a strong advantage of higher deposition rate because metal sources can be used as precursor materials. After the first attempt to produce REBCO films by the co-evaporation method in 1987, various co-evaporation technologies for high performance REBCO films have been developed during last several decades. The key points of each co-evaporation technology are reviewed in this article, which enables us to have a good insight into a new high throughput process, called as a Reactive Co-Evaporation by Deposition and Reaction (RCE-DR).

Low Temperature Chemical Vapor Deposition of BNO Thin Films for Flexible Electronic Device Applications (유연성 전자소자 적용을 위한 BNO박막의 저온화학기상증착)

  • Jeon, Sang-Yong;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.42-42
    • /
    • 2007
  • In the future, electronic components will be integrated on flexible polymer substrates and then miniaturized by thin films using suitable thin film technologies. In this article, the concept of a room temperature CVD is demonstrated using $Bi_3NbO_7$ (BNO) films with a cubic fluorite structure and their structural and electrical properties were investigated in films deposited without substrate heating. Effects of substrate temperature on electrical properties of BNO films were also studied. Films deposited without substrate heating (real temperature of $50^{\circ}C$) show partially crystallized BNO single phases with grain size of approximately 6.5 nm. Their dielectric and leakage properties are comparable to those of films deposited by pulsed laser deposition at room temperature. The concept of room temperature CVD will become a new paradigm in the deposition of dielectric thin films for flexible electron device applications.

  • PDF