• Title/Summary/Keyword: pulsed electromagnetic fields

Search Result 22, Processing Time 0.023 seconds

Evaluation of Muscle Fatigue Recovery Effect and Meridian Potential Change using Magnetic Acupuncture System (자화침 시스템을 이용한 경락전위 유발효과 및 근피로 회복 평가)

  • Kim, Soo-Byeong;Park, Sun-Woo;Ahn, Soon-Jae;Lee, Na-Ra;Lee, Seung-Wook;Min, Se-Eun;Kim, Young-Ho;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.29 no.1
    • /
    • pp.83-92
    • /
    • 2012
  • Objectives : The purpose of this research was to develop the magnetic acupuncture system which used solenoid coil for magnetizing acupuncture needle. The system could generate the meridian electric potential (MEP) similar to the potential by manual acupuncture. Thus, we tried to confirm the therapeutic effect that is caused by the MEP generation. Methods : To confirm the MEP, we stimulated the magnetic acupuncture with at 2Hz, $92.7{\pm}2mT$, PEMFs (Pulsed Electro-Magnetic Fields) at ST37 and measured the evoked potential between ST36 and ST41. Also, we conducted a fatigue recovery test using isokinetic exercise in order to identify the therapeutic effect on musculoskeletal disorders. We chose LR9 as a stimulation point. To observe the state of fatigue, we measured the EMG and analyzed median frequency and peak torque for 20minutes. Results : We observed that MEP which incurred from magnetic acupuncture was higher than he reported MEP induced by manual acupuncture. Moreover, its modes were divided into two types by the direction of magnetic flux. When generating magnetic flux in the direction of acupoint, the positive peak voltage of the MEP was generated. In contrast, negative peak voltage of the MEP was generated whenever meganetic flux generated in the outward direction. As a result of fatigue recovery, the median frequency (MF) of the magnetic acupuncture group were recovered faster than that of the non-stimulation group. However, the peak torques of both groups were not restored until after 20 minutes. Conclusions : We confirmed that the magnetic acupuncture system can lead to the MEP similar to manual acupuncture. Moreover, the MEP had a therapeutic effect on the musculoskeletal disorders.

Effects of electromagnetic stimulation on neurogenesis and neuronal proliferation in rat hippocampal slice culture (실험 쥐 해마조직배양에서 전자기 자극이 신경조직발생 및 증식에 미치는 영향)

  • Kim, Deok-Soo;Choi, Eung Sang;Chae, Soo Ahn
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.5
    • /
    • pp.558-564
    • /
    • 2006
  • Purpose : Transcranial electromagnetic stimulation(TMS) is a noninvasive method which stimulates the central nervous system through pulsed magnetic fields without direct effect on the neurons. Although the neurobiologic mechanisms of magnetic stimulation are unknown, the effects on the brain are variable according to the diverse stimulation protocols. This study aims to observe the effect of the magnetic stimulation with two different stimulation methods on the cultured hippocampal slices. Methods : We obtained brains from 8-days-old Spague-Dawley rats and dissected the hippocampal tissue under the microscope. Then we chopped the tissue into 450 µm thickness slices and cultured the hippocampal tissue by Stoppini's method. We divided the inserts, which contained five healthy cultured hippocampal slices respectively, into magnetic stimulation groups and a control group. To compare the different effects according to the frequency of magnetic stimulation, stimulation was done every three days from five days in vitro at 0.67 Hz in the low stimulation group and at 50 Hz in the high stimulation group. After N-methyl-D-aspartate exposure to the hippocampal slices at 14 days in vitro, magnetic stimulation was done every three days in one and was not done in another group. To evaluate the neuronal activity after magnetic stimulation, the $NeuN/{\beta}$-actin ratio was calculated after western blotting in each group. Results : The expression of NeuN in the magnetic stimulation group was stronger than that of the control group, especially in the high frequency stimulation group. After N-methyl-D-aspartate exposure to hippocampal slices, the expression of NeuN in the magnetic stimulation group was similar to that of the control group, whereas the expression in the magnetic non-stimulation group was lower than that of the control group. Conclusion : We suggest that magnetic stimulation increases the neuronal activity in cultured hippocamal slices, in proportion to the stimulating frequency, and has a neuroprotective effect on neuronal damage.