• Title/Summary/Keyword: punched

Search Result 134, Processing Time 0.035 seconds

Effects of Different Fenestration Configurations on Daylighting Performance in Unilateral Window under Clear and Overcast Sky Conditions (편측창에서 창개구부의 형상이 천공상태별 채광성능에 미치는 영향)

  • Azmiree, Sultana;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.9 no.5
    • /
    • pp.105-113
    • /
    • 2009
  • Daylighting provides the opportunity for both energy savings and improved visual comfort. An accurate estimation of the amount of daylight entering a building is the key step for daylight designing. This research aims to assess comparative daylighting performance of four different configurations of fenestration in case of unilateral windows and their variation under clear and overcast sky conditions. The selected window openings in this study were single punched, double punched, multiple punched and clerestory, and the area was same for each type of window. The experiment was designed for an office space using 1/10 scale model. Daylighting performance was evaluated by measuring the illuminance on work-plane height using Agilent data logger and photometric sensor Li-Cor. Thecomputer program ECOTECT was also used to simulate the pattern of interior illuminance distribution. Clerestory window showed the best performance in term of both illuminance level and distribution in the experiment. Multiple punched window provided more uniform illuminance distribution than single punched window. Lowest daylighting performance in the experiment was shown by double punched window.

An Experimental Study for the Heat Transfer Augmentation of an Impinging Jet (충돌 분류의 열전달 특성향상을 위한 실험적 연구)

  • 정기호;김예용;김귀순
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.66-74
    • /
    • 1999
  • In this study, the heat transfer augmentation without additional blower power was obtained by using punched plate. Though this scheme has some disadvantages such as decrease of momentum caused by the punched plate, it has significantly increased heat transfer coefficients in the stagnation region. Compared with the case of no punched plate, heat transfer coefficients were increased by punched plate more than 2 times near the optimum condition determined in this study. Liquid crystal and hue-capturing technique were used in this study to obtain heat transfer coefficients.

  • PDF

Study on Anisotropic Creep Behavior of Nonwoven Geotextiles

  • Das A.;Kothari V. K.;Kumar A.;Mehta M. S.
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.313-317
    • /
    • 2005
  • The anisotropy in creep behavior of two types of nonwoven fabrics (needle-punched and thermobonded spun laid) has been studied. It has been observed that the amount of time dependent extension depends on the direction, amount of loading and the structure of nonwoven the fabrics. The time dependent extension (creep) for the nonwoven fabric increases with the increase in amount of load. The higher initial extension and creep are observed for needle-punched nonwoven fabric as compared to thermobonded spun-laid nonwoven fabric. The creep behavior of needle-punched nonwoven shows a logarithmic relationship with time, but the thermobonded spun-laid nonwoven fabric does not show such logarithmic relationship. For a particular fabric, the creep is dependent on the fiber arrangement and is minimum in the direction in which the proportion of fiber is maximum and visa versa.

A Study on the development of transfer system of cutting punched pipes. (타공파이프 절단을 위한 이송시스템 개발에 관한 연구)

  • Park, J.S.;Yoon, D.H.;Jung, C.S.;Kim, Y.S.;Yang, S.Y.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.66-69
    • /
    • 2010
  • A punched pipe in a muffler for an automobile has many important variables, like location of holes in the pipe and length of the pipe related to noise reduction of a diffuser. This pipe is cut depending on length of product and this process, generally workers cut pipes by hands. In this process, there are many errors and it relies on the skill of workers, so it can happen that cycle time for complete product gets long and productivity gets low. Therefore, we need a vision system to distinguish holes in the punched pipe and a transfer system to set the cutting position automatically by moving the pipe depending on forward and backward part of the holes. This paper explains the development of an automatic transfer device which will cause the beating pipe to be cut correctly, exactly the same length as the product.

  • PDF

Punching of Micro-Hole Array (미세 홀 어레이 펀칭 가공)

  • Son Y. K.;Oh S. I.;Rhim S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.193-197
    • /
    • 2005
  • This paper presents a method by which multiple holes of ultra small size can be punched simultaneously. Silicon wafers were used to fabricate punching die. Workpiece used in the present investigation were the rolled pure copper of $3{\mu}m$ in thickness and CP titanium of $1.5{\mu}m$ in thickness. The metal foils were punched with the dies and arrays of circular and rectangular holes were made. The diameter of holes ranges from $2-10{\mu}m$. The process set-up is similar to that of the flexible rubber pad forming or Guerin process. Arrays of holes were punched successfully in one step forming. The punched holes were examined in terms of their dimensions, surface qualities, and potential defect. The effects of the die hole dimension on ultra small size hole formation of the thin foil were discussed. The optimum process condition such as proper die shape and diameter-thickness ratio (d/t) were also discussed. The results in this paper show that the present method can be successfully applied to the fabrication of ultra small size hole array in a one step operation.

  • PDF

The Effect of Pre-carbonization Condition on the Mechanical Properties of Nonwoven Carbon/Phenolic Composites (전 열처리 조건이 탄소/페놀 부직포 복합재료의 역학적 성질에 미치는 영향)

  • 정경호;박종규;이성호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.133-136
    • /
    • 2001
  • The effect of pre-carbonization condition on the mechanical properties of nonwoven needle-punched carbon/phenolic composite was studied. The nonwoven Oxi-PAN felt was pre-carbonized at different temperature. The pre-carbonized Oxi-PAN felt was needle-punched and then carbonized. Needle-punched nonwoven carbon preforms were formed into composites with phenol resin. The tensile and flexural strengths showed maximum value with pre-carbonization temperature of $500^{\circ}C$. Compared with the non-pre-carbonized composite, the mechanical properties were slightly improved.

  • PDF

Investigation of the HV Ionic Wind Generator and the Control of Corona Discharge for Air-flow Formation (기류형성을 위한 고전압 이온풍 발생장치와 코로나 제어기술에 관한 기초적 연구)

  • Lee, B.H.;Eom, J.H.;Kang, S.M.;Chang, K.C.;Ahn, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1707-1709
    • /
    • 2002
  • Ionic wind may be produced by DC corona discharges. In this work, the electrical effect has studied to evaluate applicability in fields of electrostatic cooling, ozone generation, electrostatic precipitation, heat transfer, air flow modification, and etc. The ionic wind velocity was measured as a function of the distance of pin to plate and the diameter of punched hole. The pin to punched-plate electrode generates airflow from pin to plate and the flow direction is controlled by the hole size of punched-plate, input voltage and distance between two electrodes. As a consequence, the ionic wind velocity is nearly proportional to the applied voltages and ranges from 1 to 3 m/sec.

  • PDF

Evaluation of the tensile properties and optimum condition of manufacturing of carbon needle punched perform by material composition and processing parameters (탄소 니들펀칭 프리폼의 소재조성 및 공정변수에 따른 인장 특성평가와 제작 최적화)

  • 배준희;이재열;강태진;정관수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.63-66
    • /
    • 2003
  • The effect of punching density and material composition on the tensile properties and optimum condition of manufacturing of carbon needle punched perform was studies. The interlaminar tensile strength were increased but the intralaminar tensile strength were decreased with increasing punching density. In the case of the performs composed of continuous oxi-PAN fabrics, there was a considerable improvement of the interlaminar and intralaminar tensile strength.

  • PDF

Mechanical and Thermal Properties of Needle Punched Nonwoven Carbon/Phenol Composite (니들펀칭 부직포 탄소/페놀 복합재료의 역학적 성질 및 열적 성질에 관한 연구)

  • 정경호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.50-53
    • /
    • 2000
  • The effect of punching density on the mechanical and thermal properties of nonwoven needle-punched carbon/phenol composite was studied. The carbonized preforms were farmed into composites with phenol resin. The interlaminar shear, tensile and flexural strengths were increased with increasing punching density. However, excessive punching density decreased interlaminar shear and tensile strengths. Erosion rate of carbon/phenol composite was decreased with increasing punching density

  • PDF

Characteristics of ionic Wind in a DC Corona Discharge in Needle-to-punched plate Geometry (침 대 중공평판전극에서 직류코로나 방전에 의한 이온풍 특성)

  • Lee, Bok-Hee;Kil, Hyeong-Joon;Eom, Ju-Hong;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.4
    • /
    • pp.74-80
    • /
    • 2003
  • Ionic wind is produced by a corona discharge when a DC high voltage is applied across the point-to-plane gap geometry. The corona discharge phenomena have been investigated in several beneficial application fields such as electrostatic cooling, ozone generation, electrostatic precipitation and electrostatic spraying. Recently ionic wind might be used in aerodynamic, for example, heat transfer, airflow modification, and etc. In this work, in order to analyze the control behavior of the velocity and amount of ionic wind produced by the positive DC corona discharges. The ionic wind velocity was measured as a function of the applied voltage, diameter of the punched hole on plate electrode and separation between the point-to-plate electrodes. As a results, the airflow is generated from the tip of needle to the plate electrode in the needle-to-punched-plate electrode systems. The ionic wind velocity is linearly increased with an increase in applied voltage and ranges from 1 to 3 m/sec at the locations of 100-200 mm from the punched-plate.