• Title/Summary/Keyword: purge and trap

Search Result 66, Processing Time 0.028 seconds

The Analysis of Volatile Organic Compounds in Water by Using the Purge-and-Trap and the Gas Chromatography/Mass Selective Detector with Modified Indirect Coupling (퍼지-트랩장치와 변형된 간접 결합기를 부착한 기체크로마토그래피/질량 선택성 검출기를 이용한 물중의 휘발성 유기화합물의 분석)

  • 정영자
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.2
    • /
    • pp.191-191
    • /
    • 1999
  • A Purge & Trap Concentrator was used to analyze various volatile organic compounds(VOCs) in wat-er. The object of this study was to observe the purge efficiency of 40 VOCs in water according to the change of parameters (purge time drypurge time sample temperature) and to determine the optimum condition for VOCs using the purge & Trap concentrator interfaced with a narrow capillary connected to a gas chromatography/mass spectrometry. The optimum condition of purge and trap is as follows: purge time at 11min drypurge time at 5min sample temperature at 6$0^{\circ}C$ at constant purge flow (40mol/min) constant desorption flow(20ml/min) desorption temperature(2$25^{\circ}C$) and desorption time (1min) At this analytical condition the detection limits of VOCs was in the range of 0.1~0.5$\mu$g/ml and the purge efficiency of each compound was over 70%.

A Study on Purge Efficiency in Purge and Trap Analysis of VOCs in Water

  • Lee, Gang Jin;Pyo, Hui Su;Park, Song Ja;Yu, Eun A;Lee, Dae Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.171-178
    • /
    • 2001
  • A Purge and Trap Concentrator has been used to analyze various volatile organic compounds in water, operating several parameters affecting the extraction efficiencies of these compounds. The object of the present study was to observe the purge efficiencies of 40 volatile organic compounds (VOCs) in water, according to the change of parameters (purge time, dry purge time, sample temperature), and to determine the optimum condition of analysis of VOCs. The Purge and Trap Concentrator was interfaced with a narrow capillary connected to a gas chromatography mass spectrometer. At this condition, the detection limits of VOCs were in the range of 0.1-0.5 ㎍/L.

Analysis of Volatile Organic Compounds in Water by Modified Injection Mode for Purge & Trap-GC/MS Method (Purge & Trap-GC/MS 분석법의 주입방식 개선에 의한 물 중의 휘발성 유기물 분석)

  • Jeon, Chi Wan;Lee, Sang Hak;Eum, Chul Hun
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.8
    • /
    • pp.635-642
    • /
    • 1995
  • Improved sample introduction system has been investigated for the determination of volatile organic compounds in water using a purge & trap preconcentration apparatus and a capillary gas chromatography/mass spectrometry. The present limitations associated with the moisture control module and cryorefocusing system suggested by EPA were discussed. To solve the problems such as improper separation of peaks due to the adsorption of water and contamination of purge & trap system, a more efficient connection system between the purge & trap apparatus and the gas chromatograph was introduced and the optimum operational conditions were suggested. A carbopack B/carboxen 1000 and 1001 trap was used for the purge & trap procedure and a custom made crosslinked dimethyldiphenylpolysiloxane capillary column was used for the separation of compounds. Accuracy and precision of the method suggested in this report were examined and the method detection limit of each compound was proposed for the simultaneous determination of 54 volatile organic compounds in water.

  • PDF

Comparison Solid Phase Microextraction with Purge & Trap on the GC/MS Analysis of Volatile Organic Compounds in Biota Samples (Solid Phase Microextraction 및 Purge & Trap을 이용한 생물시료 중 휘발성 유기화합물의 GC/MS 분석비교)

  • Ahn, Yun-Gyong;Seo, Jong-Bok;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.392-399
    • /
    • 2001
  • The analysis of n-butylbenzene and 1,2-dibromo-3-chloropropane (DBCP) as volatile organic compounds in biota samples was performed by gas chromatography/mass spectrometry-selected ion monitoring mode. The target compounds, n-butylbenzene and DBCP, in biota samples were extracted by headspace solid phase microextraction (SPME) with $100{\mu}m$ polydimethyl siloxane (PDMS) fiber and purge & trap method. The extraction recoveries of these compounds obtained by SPME was 85.8% for n-butylbenzene and 92.4% for DBCP, respectively. Each value of method detection limit were $0.15{\mu}g/kg$ and $0.05{\mu}g/kg$, respectively. While in the case of purge & trap method, the extraction recovery was 115.2% for n-butylbenzene, 80.9% for DBCP and method detection limit were $0.04{\mu}g/kg$ and $0.70{\mu}g/kg$, respectively. The extraction yields and detection limits of these compounds obtained by purge & trap were equivalent to those by SPME.

  • PDF

Volatile Flavor Compounds in Commercial Milk by Static Headspace, Purge and Trap, Solid-Phase Microextraction (Static headspace, purge & trap 및 solid-phase microextraction을 이용한 시판우유의 휘발성 향기성분 분석)

  • Lee, Hong-Min;Lee, Ki-Woong;Chang, Chi-Hoon;Kim, Sung-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.738-741
    • /
    • 2006
  • Volatile flavor compounds in commercial sterilized milk were analyzed and identified by static headspace, purge-and-trap, and solid-phase microextraction (SPME) methods. About 20 volatile compounds were identified by GC/MS, and aldehydes and ketones were the most distinctive and abundant compounds. Static headspace analysis allowed the identification of only the most abundant compounds, such as acetone. Five ketones (acetone, 2-butanone, 2-pentanone, 2-heptanone, 2-nonanone), four aldehydes (2-methylbutanal, pentanal, hexanal, benzaldehyde) and dimethyl sulfide, all of which were responsible for off-flavor in milk, were found by the purge-and-trap and SPME methods. The two methods differed little in their release of these compounds, but they yielded different amounts in the extraction.

Study on Analysis of Volatile Organic Compounds(VOCs) in Water(II) (수중 휘발성 유기물질의 분석에 관한 연구 (I) - Purge & Trap을 이용한 휘발성 유기물질 분석기법의 고찰 -)

  • 전옥경;서병태;이정자
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.4
    • /
    • pp.53-59
    • /
    • 1994
  • Since trihalomethanes (THMs) and other volatile organic compounds (VOCs) were detected and measured in drinking water supplies in 1974, because of the frequent occurrence of these compounds and the potential health hazard they pose, several methods for detecting VOCs have been developed. The most widely accepted method for the analysis of THMs and other VOCs is a purgeand-trap method. In the analysis of VOCs by purge-and-trap,there are several factors which may give rise to errors. Some of the factors to be considered are purge time, carryover effect, cryofocusing temperature, and trap desorption temperature. In this study,many aspects of purge-and-trap were investigated. Understanding the sources of error makes it possible to adapt the analysis parameters to compensate for such effects.

  • PDF

Analysis of Volatile Flavor Compounds in Cow's Milk by Purge & Trap Method (Purge & Trap 법에 의한 국내산 우유 중의 휘발성 향기성분 분석)

  • Jun Jang-Young;Kim Sung-Han;Kwak Byung-Man;Ahn Jang-Hyuk;Kong Un-Young
    • Food Science of Animal Resources
    • /
    • v.25 no.1
    • /
    • pp.78-83
    • /
    • 2005
  • Purge & Trap method was applied to perform more simple and rapid detection for analysis of volatile flavor compounds in milk. Maximal sampling of 30 mL milk for glass flask sparger was treated by He gas purging for 2 hours. Reported major volatile compounds were detected by GC-MS after 2 hours absorption and desorbed from Purge & Trap equipped with Tenax trap. Volatile flavor compounds were analyzed by Purge & Trap and GC-MS to investigate the changes of flavor components in milk between raw and deodorized milk. Fourteen volatile compounds including acetaldehyde, ethanol, 2-propanone, dimethyl sulfide, isobutanal, 3-methyl 2-butanone, 2-butanone, 3-methyl butanal, pentanal, 3-hydroxy-2-butanone, methyl disulfide, hexanal, and 2 others were detected. Six compounds such as ethanol, dimethyl sulfide, pentanal, 3-hydroxy-2-butanone, and methyl disulfide were completely eliminated after deodorization treatment. Four compounds such as 3-methyl 2-butanone, 2-butanone, 3-methyl butanal, and an unknown compound 81 (M/sup +/) were also decreased after raw milk was deodorized. The other four compounds such as acetaldehyde, 2-propanone, hexanal, and an unknown compound (M/sup +/) were not decreased.

Development of Diffusion - Precipitation Method to Determine AVS Concentrations in Freshwater Sediments

  • Song, Ki-Hoon
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.4
    • /
    • pp.374-378
    • /
    • 2005
  • A diffusion - precipitation method was developed to determine acid volatile sulfide (AVS) concentrations in freshwater sediments. This method uses silver nitrate as a sulfide trap solution and the concentration of trapped sulfide is determined gravimetrically. The proposed diffusion - precipitation method is more rapid and less expensive than previously developed purge- and - trap methods. Spiked sodium sulfide recoveries using this method $(97\~120\%)$ were similar with a previously developed diffusion - absorption method $(93.8\~115\%)$ and about $20\%$ greater than a previously developed purge-and-trap method $(74.6\~105\%)$. Detection limit of this method $(0.1\;{\mu}mole\;S\;g^{-l})$ was comparable with that of diffusion-absorption method $(0.06\;{\mu}mole\;S\;g^{-l})$ and purge-and-trap method $(0.05\~0.5\;{\mu}mole\;S\;g^{-l})$.

Volatile Components of Pine Needle(Pinus densiflora S.) by Purge and Trap Headspace (Purge and Trap Headspace 법에 의한 솔잎(Pinus densiflora S.)의 휘발성 성분)

  • Lee Jae-Gon;Lee Chang-Gook;Jang Hee-Jin;Kwag Jae-Jin
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.3
    • /
    • pp.260-265
    • /
    • 2004
  • Volatile components of pine needle(Pinus densiflora S.) were isolated by purge & trap headspace technique and analyzed by gas chromatography-mass spectrometry(GC-MS). And then volatile components were extracted for 2 hr and 20 hr at the two different temperature settings: room temperature and 60$^{\circ}C$. A total of 61 volatile components were identified by the four different conditions. These compounds are classified into six categories in terms of chemical functionality: 35 hydrocarbons, 16 alcohols, 4 carbonyls, 2 esters, 1 acid and 3 ethers. The major components were ${\alpha}$-pinene(1.5~15.7%), ${\beta}$-myrcene(13.2~15.6%), ${\beta}$-phellandrene(l2.0~16.0%) and cis-3-hexenol(4.0~18.3%). In the comparison of the four extraction conditions, longer extraction can be effective to extract components that have a high boiling point, but proved useless in obtaining low boiling point components. As a result of these experiments under the four different conditions, the 20 hr extraction at room temperature appeared to be the most optimized condition for the analysis of volatile compounds by using the purge & trap headspace technique.