• Title/Summary/Keyword: pwm control IC

Search Result 58, Processing Time 0.031 seconds

Design of PWM IC with Standby Mode Control Function for SMPS (대기모드 기능을 내장한 전원 장치 제어용 PWM IC 설계)

  • Park, Hyun-Il;Kim, Hyoung-Woo;Kim, Ki-Hyun;Seo, Kil-Soo;Han, Seok-Bung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.289-295
    • /
    • 2008
  • In this paper, we designed the off-line PWM(Pulse width modulation) control IC for flyback type power converter to reduce the standby power consumption. In normal state, this off-line PWM IC generates the output pulse with $40\sim60kHz$ frequency and duty ratio of $20\sim88%$. When SMPS operates in standby mode, this IC generates the output pulse with 33kHz frequency and duty ratio of 1 %. SPICE simulation was performed to verify the standby power consumption of the power converter with designed of-line PWM IC. Power converter with designed off-line PWM IC consumes less than 0.3W when it operates in standby mode condition.

Digital Power IC design using VHDL and FPGA (VHDL과 FPGA를 이용한 Digital Power IC 설계)

  • Kim, Min Ho;Koo, Bon Ha;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.27-32
    • /
    • 2013
  • In this paper, the boost converter was implemented by digital control in many applications of the step-up. The PWM(pulse width modulation) control module of boost converter was digitized at power converter using the FPGA device and VHDL. The boost converter was designed to output a fixed voltage through the PI control algorithm of the PWM control module even if input voltage and output load are variable. The boost converter was digitized can be simplified by reducing the size of the module and the external control components. Thus, the digital power IC has advantageous for weight reduction and miniaturization of electronic products because it can be controlled remotely by setting the desired output voltage and PWM control module. The boost converter using the digital power IC was confirmed through experiments and the good performances were showed from experiment results.

Radiation Effects on PWM Controller of DC/DC Power Buck Converter (DC/DC 전력 강압 컨버터의 PWM 제어기 방사선 영향)

  • Lho, Young-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.116-121
    • /
    • 2012
  • DC/DC switching power converters produce DC output voltages from different DC input sources. The converter is used in regenerative braking of DC motors to return energy back in the supply, resulting in energy savings for the systems containing frequent stops. The DC/DC converter is composed of a PWM-IC (pulse width modulation integrated circuit) controller, a MOSFET (metal-oxide semi-conductor field-effect transistor), an inductor, capacitors, and resistors, etc. PWM is applied to control and regulate the total output voltage. In this paper, radiation shows the main influence on the changes in the electrical characteristics of comparator, operational amplifier, etc. in PWM-IC. In the PWM-IC operation, the missing pulses, the changes in pulse width, and the changes of the output waveform are studied by the simulation program with integrated circuit emphasis (SPICE) and compared with experiments.

THERMO-CON control circuit using PWM method (PWM 방식을 이용한 THERMO-CON 제어 회로)

  • 이장혁;이경탁;이상석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2831-2834
    • /
    • 2003
  • 본 논문에서는 PWM 방식을 이용한 THERMO-CON 제어 회로를 제안하였다. 제안한 회로는 정전압을 형성하기 위한 레귤레이터, 신호를 처리하기 위한 op-amp, 삼각파를 만들기 위한 OSC, 그리고 부하의 상태를 감지하기 위한 AMC 와 ISC 로 구성된다. 테스트 결과 서지 전압인가 시 PWM 방식으로 동작하여 회로의 P/sub D/(Power Dissipation)을 줄여 소자의 파괴를 막고 중부하 시(여러 개의 릴레이 구동 시) PWM 동작을 하여 소자의 파괴를 막는다는 것을 확인하였으며, 출력 쇼트 시 쇼트보호회로에 의해 출력 트랜지스터의 파괴를 막는다는 것을 확인하였다.

  • PDF

A Design of PFM/PWM Dual Mode Feedback Based LLC Resonant Converter Controller IC for LED BLU (PFM/PWM 듀얼 모드 피드백 기반 LED BLU 구동용 LLC 공진 변환 제어 IC 설계)

  • Yoo, Chang-Jae;Kim, Hong-Jin;Park, Young-Jun;Lee, Kang-Yoon
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.267-274
    • /
    • 2013
  • This paper presents a design of LLC resonant converter IC for LED backlight unit based on PFM/PWM dual-mode feedback. Dual output LLC resonant architecture with a single inductor is proposed, where the master output is controlled by the PFM and slave output is controlled by the PWM. To regulate the master output PFM is used as feedback to control the frequency of the power switch. On the other hand, PWM feedback is used to control the pulse width of the power switch and to regulate the slave output. This chip is fabricated in 0.35um 2P3M BC(Bipolar-CMOS-DMOS) Process and the die area is $2.3mm{\times}2.2mm$. Current consumptions is 26mA from 5V supply.

Low-area Dual mode DC-DC Buck Converter with IC Protection Circuit (IC 보호회로를 갖는 저면적 Dual mode DC-DC Buck Converter)

  • Lee, Joo-Young
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.586-592
    • /
    • 2014
  • In this paper, high efficiency power management IC(PMIC) with DT-CMOS(Dynamic threshold voltage Complementary MOSFET) switching device is presented. PMIC is controlled PWM control method in order to have high power efficiency at high current level. The DT-CMOS switch with low on-resistance is designed to decrease conduction loss. The control parts in Buck converter, that is, PWM control circuit consist of a saw-tooth generator, a band-gap reference(BGR) circuit, an error amplifier, comparator circuit, compensation circuit, and control block. The saw-tooth generator is made to have 1.2MHz oscillation frequency and full range of output swing from supply voltage(3.3V) to ground. The comparator is designed with two stage OP amplifier. And the error amplifier has 70dB DC gain and $64^{\circ}$ phase margin. DC-DC converter, based on current mode PWM control circuits and low on-resistance switching device, achieved the high efficiency nearly 96% at 100mA output current. And Buck converter is designed along LDO in standby mode which fewer than 1mA for high efficiency. Also, this paper proposes two protection circuit in order to ensure the reliability.

A Study on Effective Control Methodology for DC/DC Converter (DC/DC 컨버터의 효율적인 제어기법 연구)

  • Lho, Young Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.756-759
    • /
    • 2014
  • DC/DC converters are commonly used to generate regulated DC output voltages with high-power efficiencies from different DC input sources. The converters can be applied in the regenerative braking of DC motors to return energy back to the supply, resulting in energy savings for the systems at periodic intervals. The fundamental converter studied here consists of an IGBT (Insulated Gate Bipolar mode Transistor), an inductor, a capacitor, a diode, a PWM-IC (Pulse Width Modulation Integrated Circuit) controller with oscillator, amplifier, and comparator. The PWM-IC is a core element and delivers the switching waveform to the gate of the IGBT in a stable manner. Display of the DC/DC converter output depends on the IGBT's changes in the threshold voltage and PWM-IC's pulse width. The simulation was conducted by PSIM software, and the hardware of the DC/DC converter was also implemented. It is necessary to study the fact that the output voltage depends on the duty rate of D, and to compare the output of experimental result with the theory and the simulation.

Highly power-efficient and reliable light-emitting diode backlight driver IC for the uniform current driving of medium-sized liquid crystal displays

  • Hong, Seok-In;Nam, Ki-Soo;Jung, Young-Ho;Ahn, Hyun-A;In, Hai-Jung;Kwon, Oh-Kyong
    • Journal of Information Display
    • /
    • v.13 no.2
    • /
    • pp.73-82
    • /
    • 2012
  • In this paper, a light-emitting diode (LED) backlight driver integrated circuit (IC) for medium-sized liquid crystal displays (LCDs) is proposed. In the proposed IC, a linear current regulator with matched internal resistors and an adaptive phase-shifted pulse-width modulation (PWM) dimming controller are also proposed to improve LED current uniformity and reliability. The double feedback loop control boost converter is used to achieve high power efficiency, fast transient characteristic, and high dimming frequency and resolution. The proposed IC was fabricated using the 0.35 ${\mu}m$ bipolar-CMOS-DMOS (BCD) process. The LED current uniformity and LED fault immunity of the proposed IC were verified through experiments. The measured power efficiency was 90%; the measured LED current uniformity, 97%; and the measured rising and falling times of the LED current, 86 and 7 ns, respectively. Due to the fast rising and falling characteristics, the proposed IC operates up to 39 kHz PWM dimming frequency, with an 8-bit dimming resolution. It was verified that the phase difference between the PWM dimming signals is changed adaptively when LED fault occurs. The experiment results showed that the proposed IC meets the requirements for the LED backlight driver IC for medium-sized LCDs.

Standby mode function control circuit for power supply (대기모드 기능을 내장한 전원 장치 제어 회로)

  • Park, Hyun-Il;Kim, Hyoung-Woo;Kim, Ki-Hyun;Seo, Kil-Soo;Han, Seok-Bung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.196-198
    • /
    • 2007
  • 본 논문에서는 가전 및 사무용 전원장치가 대기모드 상태에 있는 경우의 전력소모를 줄일 수 있는 PWM(Pulse Width Modulation) IC를 설계하였다. 설계된 PWM IC는 전원장치가 정상상태에서 동작하는 경우 전원장치 출력단에서 피드백 받은 신호의 크기에 따라 40 ~ 60kHz의 구동 주파수를 가지는 스위칭 소자 구동 신호를 내보내고, 대기모드 상태에서 동작하는 경우에는 최소 33KHz의 주파수를 가지는 신호를 내보내도록 설계되었다. 각각의 경우에 스위칭 소자 구동 신호의 듀티비는 정상상태인 경우에는 20 ~ 88%, 대기모드 상태인 경우에는 1%이내가 되도록 설계하였다. 시뮬레이션을 통해 검증한 결과 대기모드 상태에서 전원장치의 전력소모량은 0.2W 정도로 작게 나타남을 확인하였다.

  • PDF

A Dual-Output Integrated LLC Resonant Controller and LED Driver IC with PLL-Based Automatic Duty Control

  • Kim, HongJin;Kim, SoYoung;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.886-894
    • /
    • 2012
  • This paper presents a secondary-side, dual-mode feedback LLC resonant controller IC with dynamic PWM dimming for LED backlight units. In order to reduce the cost, master and slave outputs can be generated simultaneously with a single LLC resonant core based on dual-mode feedback topologies. Pulse Frequency Modulation (PFM) and Pulse Width Modulation (PWM) schemes are used for the master stage and slave stage, respectively. In order to guarantee the correct dual feedback operation, Phased-Locked Loop (PLL)-based automatic duty control circuit is proposed in this paper. The chip is fabricated using $0.35{\mu}m$ Bipolar-CMOS-DMOS (BCD) technology, and the die size is $2.5mm{\times}2.5mm$. The frequency of the gate driver (GDA/GDB) in the clock generator ranges from 50 to 425 kHz. The current consumption of the LLC resonant controller IC is 40 mA for a 100 kHz operation frequency using a 15 V supply. The duty ratio of the slave stage can be controlled from 40% to 60% independent of the frequency of the master stage.