• Title/Summary/Keyword: pyloric caeca

Search Result 30, Processing Time 0.026 seconds

Isolation of a starfish myorelaxant peptide (SMP) isotype from the pyloric caeca of Patiria pectinifera

  • Kubarova, Anastasia;Go, Hye-Jin;Park, Nam Gyu
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.4
    • /
    • pp.163-170
    • /
    • 2021
  • Peptides are naturally occurring biological molecules that are found in all living organisms. These biologically active peptides play a key role in various biological processes. The aim of this study is the extraction and the purification of bioactive materials that induce relaxation of an apical muscle from the pyloric caeca of Patiria pectinifera. The acidified pyloric caeca extract was partially separated by the solid phase extraction using a stepwise gradient on Sep-Pak C18 cartridge. Among the fractions, materials eluted with 60% methanol/0.1% trifluoroacetic acid was put a thorough of a series of high performance liquid chromatography (HPLC) steps to isolate a neuropeptide with relaxation activity. The purified compound was eluted at 28% acetonitrile in 0.1% trifluoroacetic acid with retention time of 25.8 min on the CAPCELL-PAK C18 reversed-phase column. To determine the molecular weight and the amino acid sequence of the purified peptide, LC-MS and Edman degradation method were used, respectively. The primary structure of the peptide was determined to be FGMGGAYDPLSAGFTD which corresponded to the amino acid sequence of a starfish myorelaxant peptide (SMP) isotype (SMPb) found in the cDNA sequence encoding SMPa and its isotypes. In this study, a muscle relaxant neuropeptide (SMPb) has been isolated from pyloric caeca of starfish P. pectinifera. This is the first report of SMPb isolation on the protein level from P. pectinifera.

Purification of Two Novel Antimicrobial Peptides from Pyloric Caeca of the Starfish Asterina pectinifera (별불가사리 Asterina pectinifera의 유문맹낭 추출물로부터 새로운 2종류의 항균활성 펩타이드의 정제)

  • Go, Hye-Jin;Bae, Yun Jung;Park, Nam Gyu
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.860-864
    • /
    • 2014
  • PAP-1, a novel antimicrobial peptide isolated from pyloric caeca extract of the starfish Asterina pectinifera was purified and characterized. First, the acidified pyloric caeca extract was put through Sep-Pak C18 solid phase extraction cartridge using a stepwise gradient. Among the eluents, RM 60 (retained materials at 60% methanol) showed good antimicrobial activity against Bacillus subtilis and Escherichia coli D31 and was purified in C18 reversed-phase and ion-exchange high-performance liquid chromatography columns. The purification steps yielded two novel peptides showing strong antimicrobial activities. These peptides were named pyloric caeca A. pectinifera peptide 1 and 2 (PAP-1 and PAP-2). For the characterization of the purified peptides, the molecular weights and amino acid sequences were determined by MALDI-TOF MS and Edman degradation. The molecular weights of PAP-1 and PAP-2 were about 2951.54 Da and 2980.15 Da respectively. The amino acid sequences of PAP-1 and PAP-2 were partially determined: AIQNAGES and AIQNAAES, respectively. PAP-2 is an isoform of PAP-1, differing merely by a single residue at position 6 (glycine or alanine). The comparison of the N-terminal amino acid sequences and molecular weights of the peptides with those of other known antimicrobial peptides revealed that PAP-1 and PAP-2 have no homology with any known peptides. These findings suggest that PAP-1 and PAP-2 play a significant role in the innate defense system of starfish pyloric caeca.

The Proteinase Distributed in the Intestinal Organs of Fish 1. Purification of the Three Alkaline Proteinases from the Pyloric Caeca of Mackerel, Scomber japonicus (어류의 장기조직에 분포하는 단백질분해효소에 관한 연구 1. 고등어 유문수조직으로부터 3종의 알칼리성 단백질분해효소의 분리${\cdot}$정제)

  • PYEUN Jae-Hyeung;KIM Hyeung-Rak
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.6
    • /
    • pp.537-546
    • /
    • 1986
  • In the previous paper(Kim et al, 1986), the alkaline proteinase from the pyloric caeca of mackerel was shown relatively strong activity in the alkaline pH range. Therefore purification of the enzyme has been undertaken to identify the proteolytic enzyme and three alkaline proteinases were isolated by ammonium sulfate fractionation, DEAE-Sephadex A-50 column chromatography and Sephadex G-100 gel filtration. One percent sodium chloride solution was the most effective for the extraction of alkaline proteinase from the pyloric caeca of mackerel. Three alkaline proteinases temporarily designated Enz. A, B and C were isolated from the pyloric caeca of mackerel, and identified to be homogeneous with electrophoresis. The specific activity of the purified Enz. A, B and C was increased to 34, 53 and 37-fold over the crude enzyme solution, respectively. Yield of them was 1.6, 2.1 and $1.5\%$, respectively, and a combined yield was $5.2\%$.

  • PDF

Biological Study on the Increment of Survival Rate during Early Life Cycle in the Rockfish, Sebastes schlegeli(Teleostei: Scorpaenidae) - III. Ultrastructure of the Adult Digestive Tract (조피볼락, Sebastes schlegeli의 초기 생활사 동안 생존율 향상을 위한 생물학적 연구 - III. 성체 소화관의 미세구조)

  • Chin, Pyung;Lee, Jung-Sick;Shin, Yun-Kyung;Kim, Hak-Gyoon
    • Korean Journal of Ichthyology
    • /
    • v.10 no.1
    • /
    • pp.115-127
    • /
    • 1998
  • The digestive tract of the rockfish, Sebastes schlegeli composed of pharynx, esophagus, stomach, intestine, anus and ten or eleven pyloric caeca. Pyloric caeca is blind sac of banana shape, and that is originated from pyloric portion of the stomach. The relative length of gut(RLG), that is length of digestive tract to standard length, is about 1.56(n=10). Esophageal muscularis consists of thin outer layer of longitudinal muscle and thick inner layer of circular muscle. Mucosal epithelium consists of columnar epithelium with short microvilli and contains numerous mucous secretory cell. The mucosal folds of the stomach are regular, and the muscularis consists of longitudinal, oblique and circular muscle layer. The chief cell of the gastric gland have a tubular mitochondria, endoplasmic reticula and numerous secretory granules in electron-dense. However, parietal cell contains small mitochondria, endoplasmic reticula and vacuoles in low electron density. Mucosal epithelium of the pyloric caeca and intestine composed of columnar epithelium, goblet cell, rodlet cell and dark cell. Columnar absorptive cell in the pyloric caeca and intestine contains well developed mitochondria, endoplasmic reticula, vesiculated granules in high electron density, pinocytotic vesicles and multivesicular body. Rodlet cell have a well developed cytoplasmic capsule and the endoplasmic reticula in the cytoplasm. Dark cell showing a high electron density in the cytoplasm and contains well developed mitochondria. Columnar epithelium of the intestine have a well developed intercellular junction and the microvilli which contains actin filament originated from the cytoplasm. Mucosal epithelium of the intestine have a longer microvilli and more abundant goblet cells than in the pyloric caeca.

  • PDF

Ontogenetic Development of the Digestive System in Chub Mackerel Scomber japonicus Larvae and Juveniles

  • Park, Su-Jin;Lee, So-Gwang;Gwak, Woo-Seok
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.301-309
    • /
    • 2015
  • Chub mackerel, Scomber japonicus, larvae and juveniles were reared from hatching to 35 days after hatching (DAH), and the development of their digestive systems was histologically investigated. The larvae were initially fed on rotifers and Artemia nauplii starting around 19 DAH, and thereafter on Artemia nauplii, fish eggs, and a formulated feed mixture. The primitive digestive system differentiated at 3 DAH; the digestive tract was distinctively divided into the buccopharyngeal cavity, esophagus, stomach, air bladder, intestines, and rectum. The gastric gland and pyloric caeca first appeared at 5 and 7 DAH, respectively. The stomach was divided into cardiac, fundic, and pyloric regions in the preflexion phase. The number of gastric glands and pyloric caeca, as well as the volume of the gastric blind sac increased markedly, with development continuing into the juvenile stage. The precocious development of the digestive system during the larval period might be related to the early appearance of piscivory, which is able to support high growth potential. The organogenesis results obtained for this precocial species represent a useful tool to aid our understanding of the physiological requirements of larvae and juveniles to ensure optimal welfare and growth under aquaculture conditions, which will improve current rearing practices of this scombrid species.

The Proteinase Distributed in the Intestinal Organs of Fish 3. Purification and Some Enzymatic Properties of the Alkaline Proteinases from the Pyloric Caeca of Skipjack, Katsuwonus vagans

  • PYEUN Jae-Hyeung;KIM Hyeung-Rak;HEU Min-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.2
    • /
    • pp.85-96
    • /
    • 1988
  • Purification and some properties of alkaline proteinases in the pyloric caeca of skipjack, Katsuwonus vagans, were investigated. Four alkaline proteinases, temporarily designated proteinases I, II, III and IV, were identified from the tissue extract of the pyloric caeca by ammonium sulfate fractionation, DEAE-Sephadex A-50 chromatography, and Sephadex G-100 and G-200 gel filtration. Result of disc-polyacrylamide gel electrophoretic analysis showed that the purified proteinases II and III were homogenous with the yields of $1.5\%\;and\;1.2\%$, and those specific activities were increased to 33 to 37 fold over that of the crude enzyme solution, respectively. Molecular weight of the proteinases II and III determined by sephadex G-100 gel filtration were 28,500 and 24,200, respectively. The optimum conditions for the caseinolytic activity of the two enzymes were pH 9.6 and $48^{\circ}C$. The reaction rates of the two alkaline proteinases were constant to the reaction time to 80 min in the reaction mixture of $3.4{\mu}g/ml$ of enzyme concentration and $2\%$ casein solution. The Km values against casein substrate determined by the method of Lineweaver-Burk were $0.56\%$ for proteinase II and $0.30\%$ for proteinase II. The proteinases II and III were inactivated under the presence of $Ag^+,\;Hg^{2+},\;Ni{2+},\;Fe^{2+},\;and\;Cu^{2+}$, and but activated by $Mn^{2+}\;and\;Ca^{2+}$ and markedly inhibited by the soybean trypsin inhibitor and N-p-toluenesulfonyl-L-lysine chloromethyl ketone. Therefore, the proteinases II and III were found to be a group of serine proteases and assured to be trypsin-like proteinases.

  • PDF

Recovery of Protein Hydrolysate from Hoki (Johnius belengeri) Frame with Tuna Pyloric Caeca Crude Enzyme and Its Functionalities (참치 유래 조효소를 이용한 민태(Johnius belengeri) Frame으로부터 단백질 가수분해물의 회수 및 그 기능성)

  • Jeon, You-Jin;Lee, Byoung-Jo;Byun, Hee-Guk;Kim, Jong-Bae;Kim, Se-Kwon
    • Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.49-57
    • /
    • 1999
  • Enzymatic hydrolysis with tuna pyloric caeca crude enzyme(TPCCE) was performed to recover a protein hydrolysate from hoki frame, fish processing by-product. Optimum hydrolytic conditions were pH 10.0, temperature $50^{\circ}C$, and incubation time 12 hrs, and then the degree of hydrolysis was about 60%. The yield of the hydrolysate from hoki frame by enzymatic hydrolysis was approximately 77% on a dry weight basis. The prepared protein hydrolysates were also fractionated through a series of 30, 10, 5 and 1 kDa molecular weight cut-off (MWCO) membranes in order to investigate the effect of their functionalities according to the difference of their molecular size. As the result of studying functionalities of the hydrolysates, 1 K hydrolysate showed the highest solubility over all pHs, and 30 and 10 K hydrolysate showed more excellent emulsifying property and whippability than the other hydrolysates.

  • PDF

Proteolytic Enzymes Distributed in the Tissues of Dark Fleshed Fish 2. Comparison of the Proteolytic Activity of the Tissue Extract from the Internal Organs of Mackerel and Sardine (혈합육어의 조직중에 분포하는 단백질분해효소 2. 고등어와 정어리 장기조직에서 추출한 단백질분해효소의 활성비교)

  • KIM Hyeung-Rak;PYEUN Jae-Hyeung;CHO Jin-Guen
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.6
    • /
    • pp.521-528
    • /
    • 1986
  • In this paper, proteolytic activity of the tissue extracts from the internal organs such as alimentary canal, pancreas, pyloric caeca, stomach, liver and spleen of mackerel, Scomber japonicus, and sardine, Sardinops melanosticta, was compared with each other under the optimum reaction condition. The proteinases distributed in alimentary canal, pancreas, pyloric caeca and spleen were active in alkaline pH range, but those in stomach were shown the activity in acid pH range, furthermore those in liver were exhibited the activity in acid, neutral and alkaline pH range. The proteinases distributed in the internal organs of both fish were stable at the heat treatment of $45^{\circ}C$ for 5 minutes. The proteinases from stomach and pyloric caeca of the two fish and those from pancreas of sardine were less stable than those from any other internal organs of both fish. Whereas the proteinases from spleen and neutral proteinases from liver were shown to be stable by the heat treatment at $55^{\circ}C$ for 5 minutes. The proteinases from pyloric caeca of both fish, and stomach, pancreas and spleen of mackerel were stable during the whole storage days at $5^{\circ}C$, but the other proteinases were slowly inactivated after 14 days of storage. The enzymes were seemed to be more stable in the storage at $-15^{\circ}C$ than at $5^{\circ}C$.

  • PDF

Morphology and Histology of the Digestive Tract of the Black Sea Bream, Acanthopagrus schlegeli (감성돔 (Acanthopagrus schlegeli) 소화관의 구조 및 조직학적 특징)

  • LEE Jung Sick;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.642-648
    • /
    • 1999
  • The digestive tract of the black sea bream, Acanthopagrus schlegeli is composed of esophagus, stomach, intestine, anus and four or five pyloric caeca. Pyloric caecum is a blind sac in shape and originated from pyloric portion of the stomach. Relative length of But (RLG), that is length of digestive tract to standard length, is 1.04 (n=10). Histological layer of the digestive tract is composed of serous membrane, muscular layer, undeveloped submucosal layer and mucosal layer. The mucosal folds of the esophagus are regular branched form, Esophageal muscularis mucosae is well-developed. Mucosal epithelial layer is composed of cuboidal or columnar epithelium and mucous secretory cell. Microvilli are absent in the free surface of mucosal epithelium. The mucosal folds of the stomach are regular unbranched form. The stomach has a well-developed muscular layer and muscularis mucosae. Microvilli are present in the free surface of mucosal surface epithelium. The fundic portion of the stomach have a well-developed gastric gland and more numerous secretory granules than the other parts. The mucosal folds of the pyloric caeca and the intestine are irregular branched form, Intestine is divided into the anterior, mid and posterior intestines with length of mucosal folds and histological features, Posterior intestine has a more developed striated border and goblet cells than the other parts. Mid intestine has a more abundant absorptive cells than the other parts in the intestine and pyloric caeca.

  • PDF

The Seasonal Variations of the Oil Content and Vitamin A Distribution of Mackerel Caught in Korea (한국산(韓國産) 고등어의 Vitamin A 분포(分布) 및 시기적변화(時期的變化)에 대하여)

  • Lee, Eung-Ho
    • Applied Biological Chemistry
    • /
    • v.6
    • /
    • pp.15-24
    • /
    • 1965
  • The mackerels, Scomber japonicus (HOUTTYN), for this study were caught by purse sein net in Korea. In this paper, the seasonal variations of the oil content and Vitamin A concentration in oil in different parts of the mackerel, the distribution of the Vitamin A of viscera of that and physical and chemical constants of oil were discussed. The results are summarized as follows: 1. In the beginning of June, the liver weight increased rapidly and reached the maximum. In this period, the gonad weight was also maximum. It seemed that this phenomenon has influenced on the nutritional and physiological aspects of the spawning stage. 2. The Vitamin A concentration of liver oil reached the maximum value in the middle of July. In the most case, it was proportinate to the oil content in liver inversely. 3. The Vitamin A concentration of pyloric caeca oil reached the maximum Value in the late of July. It showed the tendency of being proportionate to the oil content in pyloric caeca inversely. And the Vitamin A concentration of intestine oil reached maximum value in the beginning of July. 4. The distribution average ratio of Vitamin A in liver, pyloric caeca, intestine, stomach and contents of stomach and gonad to the total Vitamin A in whole viscera were 60.8, 29.4, 5.7, 2.2, and 1.9 percentage. The seasonal variation of the distribution of Vitamin A in pyloric caeca to the amount of total Vitamin A in whole viscera was proportionate to that of liver inversely. 5. It seemed that there were no any corelation between the Vitamin A content and seasonal variation of the physical and chemical constants of viscera oil. But when the Vitamin A concentration was high, the refractive index, the amount of unsaponifiable matter and iodine value of viscera oil were also high. 6. On the extracting vitamin oil of viscera of mackerel, it is the most suitable period from the end of May to the middle of October. The liver, pyloric caeca and intestine of mackerel are valuable and the other parts of vicera are worthless as vitamin oil resources. It is probable that the whole viscera oil could also be utilized as vitamin-rich oil, if it were concentrated.

  • PDF