• Title/Summary/Keyword: q-gamma function

Search Result 61, Processing Time 0.047 seconds

INEQUALITIES FOR THE (q, k)-DEFORMED GAMMA FUNCTION EMANATING FROM CERTAIN PROBLEMS OF TRAFFIC FLOW

  • Nantomah, Kwara;Prempeh, Edward
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • In this paper, the authors establish some double inequalities concerning the (q, k)-deformed Gamma function. These inequalities emanate from certain problems of traffic flow. The procedure makes use of the integral representation of the (q, k)-deformed Gamma function.

THE q-DEFORMED GAMMA FUNCTION AND q-DEFORMED POLYGAMMA FUNCTION

  • Chung, Won Sang;Kim, Taekyun;Mansour, Toufik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1155-1161
    • /
    • 2014
  • In this paper, we rederive the identity ${\Gamma}_q(x){\Gamma}_q(1-x)={\frac{{\pi}_q}{sin_q({\pi}_qx)}$. Then, we give q-analogue of Gauss' multiplication formula and study representation of q-oscillator algebra in terms of the q-factorial polynomials.

MONOTONICITY CRITERION AND FUNCTIONAL INEQUALITIES FOR SOME q-SPECIAL FUNCTIONS

  • Mehrez, Khaled
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.133-147
    • /
    • 2021
  • Our aim in this paper is to derive several new monotonicity properties and functional inequalities of some functions involving the q-gamma, q-digamma and q-polygamma functions. More precisely, some classes of functions involving the q-gamma function are proved to be logarithmically completely monotonic and a class of functions involving the q-digamma function is showed to be completely monotonic. As applications of these, we offer upper and lower bounds for this special functions and new sharp upper and lower bounds for the q-analogue harmonic number harmonic are derived. Moreover, a number of two-sided exponential bounding inequalities are given for the q-digamma function and two-sided exponential bounding inequalities are then obtained for the q-tetragamma function.

Lq-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE

  • Kim, Yong-Cheol
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.367-379
    • /
    • 2009
  • For a prime number p, let $\mathbb{Q}_p$ denote the p-adic field and let $\mathbb{Q}_p^d$ denote a vector space over $\mathbb{Q}_p$ which consists of all d-tuples of $\mathbb{Q}_p$. For a function f ${\in}L_{loc}^1(\mathbb{Q}_p^d)$, we define the Hardy-Littlewood maximal function of f on $\mathbb{Q}_p^d$ by $$M_pf(x)=sup\frac{1}{\gamma{\in}\mathbb{Z}|B_{\gamma}(x)|H}{\int}_{B\gamma(x)}|f(y)|dy$$, where |E|$_H$ denotes the Haar measure of a measurable subset E of $\mathbb{Q}_p^d$ and $B_\gamma(x)$ denotes the p-adic ball with center x ${\in}\;\mathbb{Q}_p^d$ and radius $p^\gamma$. If 1 < q $\leq\;\infty$, then we prove that $M_p$ is a bounded operator of $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$; moreover, $M_p$ is of weak type (1, 1) on $L^1(\mathbb{Q}_p^d)$, that is to say, |{$x{\in}\mathbb{Q}_p^d:|M_pf(x)|$>$\lambda$}|$_H{\leq}\frac{p^d}{\lambda}||f||_{L^1(\mathbb{Q}_p^d)},\;\lambda$ > 0 for any f ${\in}L^1(\mathbb{Q}_p^d)$.

ON CHARACTERIZING THE GAMMA AND THE BETA q-DISTRIBUTIONS

  • Boutouria, Imen;Bouzida, Imed;Masmoudi, Afif
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1563-1575
    • /
    • 2018
  • In this paper, our central focus is upon gamma and beta q-distributions from a probabilistic viewpoint. The gamma and the beta q-distributions are characterized by investing the nature of the joint q-probability density function through the q-independence property and the q-Laplace transform.

REMARK ON AVERAGE OF CLASS NUMBERS OF FUNCTION FIELDS

  • Jung, Hwanyup
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.365-374
    • /
    • 2013
  • Let $k=\mathbb{F}_q(T)$ be a rational function field over the finite field $\mathbb{F}_q$, where q is a power of an odd prime number, and $\mathbb{A}=\mathbb{F}_q[T]$. Let ${\gamma}$ be a generator of $\mathbb{F}^*_q$. Let $\mathcal{H}_n$ be the subset of $\mathbb{A}$ consisting of monic square-free polynomials of degree n. In this paper we obtain an asymptotic formula for the mean value of $L(1,{\chi}_{\gamma}{\small{D}})$ and calculate the average value of the ideal class number $h_{\gamma}\small{D}$ when the average is taken over $D{\in}\mathcal{H}_{2g+2}$.

CERTAIN UNIFIED INTEGRAL FORMULAS INVOLVING THE GENERALIZED MODIFIED k-BESSEL FUNCTION OF FIRST KIND

  • Mondal, Saiful Rahman;Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • Generalized integral formulas involving the generalized modified k-Bessel function $J^{b,c,{\gamma},{\lambda}}_{k,{\upsilon}}(z)$ of first kind are expressed in terms generalized Wright functions. Some interesting special cases of the main results are also discussed.

PROPERTIES ON q-DIFFERENCE RICCATI EQUATION

  • Huang, Zhi-Bo;Zhang, Ran-Ran
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1755-1771
    • /
    • 2018
  • In this paper, we investigate a certain type of q-difference Riccati equation in the complex plane. We prove that q-difference Riccati equation possesses a one parameter family of meromorphic solutions if it has three distinct meromorphic solutions. Furthermore, we find that all meromorphic solutions of q-difference Riccati equation and corresponding second order linear q-difference equation can be expressed by q-gamma function if this q-difference Riccati equation admits two distinct rational solutions and $q{\in}{\mathbb{C}}$ such that 0 < ${\mid}q{\mid}$ < 1. The growth and value distribution of differences of meromorphic solutions of q-difference Riccati equation are also treated.