• Title/Summary/Keyword: quadtree grid

Search Result 15, Processing Time 0.024 seconds

LOCALLY ENRICHED QUADTREE GRID NUMERICAL MODEL FOR NEARSHORE CIRCULATION IN THE SURF ZONE

  • Park, Koo-Yong
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.187-197
    • /
    • 2000
  • This paper describes an adaptive quadtree-based 2DH wave-current interaction model which is able to predict wave breaking, shoaling, refraction, diffraction, wave-current interaction, set-up and set-down, mixing processes (turbulent diffusion), bottom frictional effects, and movement of the land-water interface at the shoreline. The wave period-and depth-averaged governing equations are discretised explictly by means of an Adams-Bashforth second-order finite difference technaique on adaptive hierarchical staggered quadtree grids. Grid adaptation is achieved through seeding points distributed according to flow criteria(e.g. local current gradients). Results are presented for nearshore circulation at a sinusoidal beach. Enrichment permits refined modelling of important localised flow features.

  • PDF

Inundation of Tsunamis Based on Quadtree Grid System (사면구조 격자에 의한 지진해일의 범람영역)

  • Lin, Tae-Hoon;Park, Koo-Yong;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.71-76
    • /
    • 2004
  • To investigate the inundation of tsunamis in the vicinity of a circular island, a numerical model has been developed based on quadtree grids. The governing equations of the model are the nonlinear shallow-water equations. The governing equations are discretized explicitly by using a finite difference leap-frog scheme on adaptive hierarchical quadtree grids. The quadtree grids are generated around a circular island where refined with rectangular or circular domain. Obtained numerical results have been verified by comparing to available laboratory measurements of run-up heights. A good agreement has been achieved.

Extraction of Ground Points from LiDAR Data using Quadtree and Region Growing Method (Quadtree와 영역확장법에 의한 LiDAR 데이터의 지면점 추출)

  • Bae, Dae-Seop;Kim, Jin-Nam;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.41-47
    • /
    • 2011
  • Processing of the raw LiDAR data requires the high-end processor, because data form is a vector. In contrast, if LiDAR data is converted into a regular grid pattern by filltering, that has advantage of being in a low-cost equipment, because of the simple structure and faster processing speed. Especially, by using grid data classification, such as Quadtree, some of trees and cars are removed, so it has advantage of modeling. Therefore, this study presents the algorithm for automatic extraction of ground points using Quadtree and refion growing method from LiDAR data. In addition, Error analysis was performed based on the 1:5000 digital map of sample area to analyze the classification of ground points. In a result, the ground classification accuracy is over 98%. So it has the advantage of extracting the ground points. In addition, non-ground points, such as cars and tree, are effectively removed as using Quadtree and region growing method.

Numerical Simulation of Flood Inundation with Quadtree Grid (사면구조 격자를 이용한 홍수범람 모의)

  • Kim, Jong-Ho;Kim, Hyung-Jun;Lee, Seung-Oh;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.45-52
    • /
    • 2007
  • In this study, the flood inundations of the Nam River catchment running through the Uiryeong and Haman regions have been simulated using the numerical model based on quadtree grids. The nonlinear Saint Venant equation is employed as the governing equation for a numerical model in this study. The governing equations are discretized explicitly with a finite difference leap-frog scheme on adaptive hierarchical quadtree grids. Results from this study are compared with those of established numerical models such as the HEC-RAS and the FLUMEN. A numerical model is also simulated according to the frequency variations of flood event. Obtained numerical results show good agreements with them of commercial models. It is found from this study that the flood inundations in the studied area can be occurred at a 500 year frequency event.

Numerical analysis of a tidal flow using quadtree grid (사면구조 격자를 이용한 조석흐름 수치모의)

  • Kim, Jong-Ho;Kim, Hyung-Jun;NamGung, Don;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.163-167
    • /
    • 2007
  • For numerical analysis of a tidal flow, a two-dimensional hydrodynamic model is developed by solving the nonlinear shallow-water equations. The governing equations are discretized explicitly with a finite difference leap-frog scheme and a first-order upwind scheme on adaptive hierarchical quadtree grids. The developed model is verified by applying to prediction of tidal behaviors. The calculated tidal levels are compared to available field measurements. A very reasonable agreement is observed.

  • PDF

Applicability Evaluation of Flood Inundation Analysis using Quadtree Grid-based Model (쿼드트리 격자기반 모형의 홍수범람해석 적용성 평가)

  • Lee, Dae Eop;An, Hyun Uk;Lee, Gi Ha;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.655-666
    • /
    • 2013
  • Lately, intensity and frequency of natural disasters such as flood are increasing because of abnormal climate. Casualties and property damages due to large-scale floods such as Typhoon Rusa in 2002 and Typhoon Maemi in 2003 rapidly increased, and these show the limits of the existing disaster prevention measures and flood forecasting systems regarding irregular climate changes. In order to efficiently respond to extraordinary flood, it is important to provide effective countermeasures through an inundation model that can accurately simulate flood inundation patterns. However, the existing flood inundation analysis model has problems such as excessive take of analysis time and accuracy of the analyzed results. Therefore, this study conducted a flood inundation analysis by using the Gerris flow solver that uses quadtree grid, targeting the Baeksan Levee in the Nakdong River Basin that collapsed because of a concentrated torrential rainfall in August, 2002. Through comparisons with the FLUMEN model that uses unstructured grid among the existing flood inundation models and the actual flooded areas, it determined the applicability and efficiency of the quadtree grid-based flood inundation model of the Gerris flow solver.

A Study on New Map Construction and Path Planning Method for Mobile Robot Navigation (이동 로봇의 주행을 위한 새로운 지도 구성 방법 및 경로 계획에 관한 연구)

  • O, Jun-Seop;Park, Jin-Bae;Choe, Yun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.9
    • /
    • pp.538-545
    • /
    • 2000
  • In this paper we proposed a new map construction and path planning method for mobile robot. In our proposed method first we introduced triangular representation map that mobile robot can navigate through shorter path and flexible motion instead of grid representation map for mobile robot navigation. method in which robot can navigate complete space through as short path as possible in unknown environment is proposed. Finally we proposed new path planning method in a quadtree representation map. To evaluate the performance of our proposed new path planning method in a quadtree representation map. To evaluate the performance of our proposed triangular representation map it was compared with the existing distance transform path planning method. And we considered complete coverage navigation and new path planning method through several examples.

  • PDF

2-DH Quadtree based Modelling of Longshore Current (연안류에 대한 2D-H 사면구조에 기초한 수치모델링)

  • 박구용
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Wave-induced currents drive nearshore transport processes, and hence an accurate understanding of wave-current interaction is required for proper management of coastal zone. This paper presents details of an adaptive quadtree grid based numerical model of the coupled wave climate and depth-averaged current field. The model accounts for wave breaking, shoaling, refraction, diffraction, wave-current interaction, set-up and set-down, mixing processes, bottom friction effects, and movement of land-water interface at the shoreline. The wave period- and depth-averaged governing equations arc discrctized explicitly by means of an Adarns¬Bashforth second-order finite difference technique on adaptive hierarchical staggered quadtree grids. Results from the numerical model are in reasonable agreement with the laboratory data of longshore current generated by oblique waves on a plane beach (Visser 1980, 1991).

  • PDF

Application of a Two-dimensional Flood Inundation Model based on Quadtree Grid (사면구조 격자 기법에 의한 2차원 홍수범람모형의 적용)

  • Kim, Jong-Ho;Lee, Seung-Oh;Yoon, Kwang-Seok;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.129-136
    • /
    • 2008
  • All measures to cope with flooding rely on flood predictions to some extent. To investigate these predictions such as maximum water level or inundation area, a numerical model has been developed. The governing equations of the model are the two-dimensional Saint-Venant equations. The governing equations are discretized explicitly by using the leap-frog scheme and upwind scheme based on quadtree grids. The predicted numerical results have been verified by comparing to those of a Thacker problem. As a result of verifications, the present model is not only nearly four times as efficient as uniform grids but also in close agreement with the previous models. Next, the developed model is applied to several flood events in the Uiryeong basin. A general tendency is found that as a frequency is increasing, overall water levels including peak water level are increasing. At only a 500 year frequency, maximum water level is higher than 18.5 m. Therefore, it can be predictable that inundation will be generated in a 500 year frequency.

Automatic Mesh Generation in the General Three-Dimensional Trimmed Surface using Qua (쿼드트리를 이용한 일반적인 3차원 트림곡면에서의 유한요소 자동생성)

  • 유동진;윤정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.136-148
    • /
    • 2000
  • In this work, a general method for the mathematical description of three-dimensional trimmed surface is proposed by introducing the base parametric surface and boundary curves. Since mesh density distribution for the analysis may vary by cases, a grid-based mesh generation algorithm using quadtree is proposed in the present work. For the assurance of connectivity of generated meshes among surfaces, a method for the pre-cleaning of boundary curves has been developed to be used in the automatic generation of the finite elements. In addition, mesh-smoothing algorithm is suggested which can be used in the general trimmed surface. In this algorithm nodes are moved on the original surface by the normal projection in each iterative smoothing procedure.

  • PDF