• Title/Summary/Keyword: quasi cyclic coding

Search Result 7, Processing Time 0.026 seconds

ON GENERALIZATIONS OF SKEW QUASI-CYCLIC CODES

  • Bedir, Sumeyra;Gursoy, Fatmanur;Siap, Irfan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.459-479
    • /
    • 2020
  • In the last two decades, codes over noncommutative rings have been one of the main trends in coding theory. Due to the fact that noncommutativity brings many challenging problems in its nature, still there are many open problems to be addressed. In 2015, generator polynomial matrices and parity-check polynomial matrices of generalized quasi-cyclic (GQC) codes were investigated by Matsui. We extended these results to the noncommutative case. Exploring the dual structures of skew constacyclic codes, we present a direct way of obtaining parity-check polynomials of skew multi-twisted codes in terms of their generators. Further, we lay out the algebraic structures of skew multipolycyclic codes and their duals and we give some examples to illustrate the theorems.

Quasi-Cyclic Low-Density Parity-Check Codes with Large Girth Based on Euclidean Geometries (유클리드 기하학 기반의 넓은 둘레를 가지는 준순환 저밀도 패리티검사 코드)

  • Lee, Mi-Sung;Jiang, Xueqin;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.36-42
    • /
    • 2010
  • This paper presents a hybrid approach to the construction of quasi-cyclic (QC) low-density parity-check (LDPC) codes based on parallel bundles in Euclidean geometries and circulant permutation matrices. Codes constructed by this method are shown to be regular with large girth and low density. Simulation results show that these codes perform very well with iterative decoding and achieve reasonably large coding gains over uncoded system.

SKEW CYCLIC CODES OVER 𝔽p + v𝔽p + v2𝔽p

  • Mousavi, Hamed;Moussavi, Ahmad;Rahimi, Saeed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1627-1638
    • /
    • 2018
  • In this paper, we study an special type of cyclic codes called skew cyclic codes over the ring ${\mathbb{F}}_p+v{\mathbb{F}}_p+v^2{\mathbb{F}}_p$, where p is a prime number. This set of codes are the result of module (or ring) structure of the skew polynomial ring (${\mathbb{F}}_p+v{\mathbb{F}}_p+v^2{\mathbb{F}}_p$)[$x;{\theta}$] where $v^3=1$ and ${\theta}$ is an ${\mathbb{F}}_p$-automorphism such that ${\theta}(v)=v^2$. We show that when n is even, these codes are either principal or generated by two elements. The generator and parity check matrix are proposed. Some examples of linear codes with optimum Hamming distance are also provided.

Efficient Parallel Block-layered Nonbinary Quasi-cyclic Low-density Parity-check Decoding on a GPU

  • Thi, Huyen Pham;Lee, Hanho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.210-219
    • /
    • 2017
  • This paper proposes a modified min-max algorithm (MMMA) for nonbinary quasi-cyclic low-density parity-check (NB-QC-LDPC) codes and an efficient parallel block-layered decoder architecture corresponding to the algorithm on a graphics processing unit (GPU) platform. The algorithm removes multiplications over the Galois field (GF) in the merger step to reduce decoding latency without any performance loss. The decoding implementation on a GPU for NB-QC-LDPC codes achieves improvements in both flexibility and scalability. To perform the decoding on the GPU, data and memory structures suitable for parallel computing are designed. The implementation results for NB-QC-LDPC codes over GF(32) and GF(64) demonstrate that the parallel block-layered decoding on a GPU accelerates the decoding process to provide a faster decoding runtime, and obtains a higher coding gain under a low $10^{-10}$ bit error rate and low $10^{-7}$ frame error rate, compared to existing methods.

Relationships between Diversity Techniques and Channel Coding Rates for SC-FDMA Systems (SC-FDMA 시스템에서의 다이버시티 기술과 채널부호화율의 관계)

  • Rim, Min-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.1-11
    • /
    • 2009
  • In OFDMA or SC-FDMA systems one can generate time varying channels or frequency selective channels using multiple transmit antennas to achieve diversity without special space-time processing at the receivers. While low channel coding rate needs to be used for distributed-allocation SC-FDMA systems with a phase rolling technique to produce time fluctuation, relatively high channel coding rate can be used when cyclic delay diversity is used to increase frequency selectivity assuming quasi-static channel. On the other hand, for block-hopping SC-FDMA systems there is no significant difference between two diversity techniques in terms of optimal channel coding rates.

Distributed Quasi-Orthogonal Space-Time Block Code for Four Transmit Antennas with Information Exchange Error Mitigation

  • Tseng, Shu-Ming;Wang, Shih-Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2411-2429
    • /
    • 2013
  • In this paper, we extend the case of information exchange error mitigation for the distributed orthogonal space-time block code (DOSTBC) for two transmit antennas to distributed quasi-orthogonal space-time block code (DQOSTBC) for four transmit antennas. A rate 1 full-diversity DQOSTBC for four transmit antennas is designed. The code matrix changes according to different information exchange error cases, so full diversity is maintained even if not all information exchange is correct. We also perform analysis of the pairwise error probability. The performance analysis indicates that the proposed rate 1 DQOSTBC outperforms rate 1/2 DOSTBC for four transmit antennas at the same transmission rate, which is confirmed by the simulation results.

Nonlinear Product Codes and Their Low Complexity Iterative Decoding

  • Kim, Hae-Sik;Markarian, Garik;Da Rocha, Valdemar C. Jr.
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.588-595
    • /
    • 2010
  • This paper proposes encoding and decoding for nonlinear product codes and investigates the performance of nonlinear product codes. The proposed nonlinear product codes are constructed as N-dimensional product codes where the constituent codes are nonlinear binary codes derived from the linear codes over higher order alphabets, for example, Preparata or Kerdock codes. The performance and the complexity of the proposed construction are evaluated using the well-known nonlinear Nordstrom-Robinson code, which is presented in the generalized array code format with a low complexity trellis. The proposed construction shows the additional coding gain, reduced error floor, and lower implementation complexity. The (64, 24, 12) nonlinear binary product code has an effective gain of about 2.5 dB and 1 dB gain at a BER of $10^{-6}$ when compared to the (64, 15, 16) linear product code and the (64, 24, 10) linear product code, respectively. The (256, 64, 36) nonlinear binary product code composed of two Nordstrom-Robinson codes has an effective gain of about 0.7 dB at a BER of $10^{-5}$ when compared to the (256, 64, 25) linear product code composed of two (16, 8, 5) quasi-cyclic codes.