• Title/Summary/Keyword: quasi-duo ring

Search Result 10, Processing Time 0.019 seconds

ON RIGHT QUASI-DUO RINGS WHICH ARE II-REGULAR

  • Kim, Nam-Kyun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.217-227
    • /
    • 2000
  • This paper is motivated by the results in [2], [10], [13] and [19]. We study some properties of generalizations of commutative rings and relations between them. We also show that for a right quasi-duo right weakly ${\pi}-regular$ ring R, R is an (S,2)-ring if and only if every idempotent in R is a sum of two units in R, which gives a generalization of [2, Theorem 4] on right quasi-duo rings. Moreover we find a condition which is equivalent to the strongly ${\pi}-regularity$ of an abelian right quasi-duo ring.

  • PDF

A STUDY ON QUASI-DUO RINGS

  • Kim, Chol-On;Kim, Hong-Kee;Jang, Sung-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.579-588
    • /
    • 1999
  • In this paper we study the connections between right quasi-duo rings and 2-primal rings, including several counterexamples for answers to some questions that occur naturally in the process. Actually we concern following three questions and modified ones: (1) Are right quasi-duo rings 2-primal$\ulcorner$, (2) Are formal power series rings over weakly right duo rings also weakly right duo\ulcorner and (3) Are 2-primal rings right quasi-duo\ulcorner Moreover we consider some conditions under which the answers of them may be affirmative, obtaining several results which are related to the questions.

  • PDF

RING WHOSE MAXIMAL ONE-SIDED IDEALS ARE TWO-SIDED

  • Huh, Chan;Jang, Sung-Hee;Kim, Chol-On;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.411-422
    • /
    • 2002
  • In this note we are concerned with relationships between one-sided ideals and two-sided ideals, and study the properties of polynomial rings whose maximal one-sided ideals are two-sided, in the viewpoint of the Nullstellensatz on noncommutative rings. Let R be a ring and R[x] be the polynomial ring over R with x the indeterminate. We show that eRe is right quasi-duo for $0{\neq}e^2=e{\in}R$ if R is right quasi-duo; R/J(R) is commutative with J(R) the Jacobson radical of R if R[$\chi$] is right quasi-duo, from which we may characterize polynomial rings whose maximal one-sided ideals are two-sided; if R[x] is right quasi-duo then the Jacobson radical of R[x] is N(R)[x] and so the $K\ddot{o}the's$ conjecture (i.e., the upper nilradical contains every nil left ideal) holds, where N(R) is the set of all nilpotent elements in R. Next we prove that if the polynomial rins R[x], over a reduced ring R with $\mid$X$\mid$ $\geq$ 2, is right quasi-duo, then R is commutative. Several counterexamples are included for the situations that occur naturally in the process of this note.

WEAKLY DUO RINGS WITH NIL JACOBSON RADICAL

  • KIM HONG KEE;KIM NAM KYUN;LEE YANG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.457-470
    • /
    • 2005
  • Yu showed that every right (left) primitive factor ring of weakly right (left) duo rings is a division ring. It is not difficult to show that each weakly right (left) duo ring is abelian and has the classical right (left) quotient ring. In this note we first provide a left duo ring (but not weakly right duo) in spite of it being left Noetherian and local. Thus we observe conditions under which weakly one-sided duo rings may be two-sided. We prove that a weakly one-sided duo ring R is weakly duo under each of the following conditions: (1) R is semilocal with nil Jacobson radical; (2) R is locally finite. Based on the preceding case (1) we study a kind of composition length of a right or left Artinian weakly duo ring R, obtaining that i(R) is finite and $\alpha^{i(R)}R\;=\;R\alpha^{i(R)\;=\;R\alpha^{i(R)}R\;for\;all\;\alpha\;{\in}\;R$, where i(R) is the index (of nilpotency) of R. Note that one-sided Artinian rings and locally finite rings are strongly $\pi-regular$. Thus we also observe connections between strongly $\pi-regular$ weakly right duo rings and related rings, constructing available examples.

WHEN NILPOTENTS ARE CONTAINED IN JACOBSON RADICALS

  • Lee, Chang Ik;Park, Soo Yong
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1193-1205
    • /
    • 2018
  • We focus our attention on a ring property that nilpotents are contained in the Jacobson radical. This property is satisfied by NI and left (right) quasi-duo rings. A ring is said to be NJ if it satisfies such property. We prove the following: (i) $K{\ddot{o}}the^{\prime}s$ conjecture holds if and only if the polynomial ring over an NI ring is NJ; (ii) If R is an NJ ring, then R is exchange if and only if it is clean; and (iii) A ring R is NJ if and only if so is every (one-sided) corner ring of R.

JACOBSON RADICAL AND NILPOTENT ELEMENTS

  • Huh, Chan;Cheon, Jeoung Soo;Nam, Sun Hye
    • East Asian mathematical journal
    • /
    • v.34 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • In this article we consider rings whose Jacobson radical contains all the nilpotent elements, and call such a ring an NJ-ring. The class of NJ-rings contains NI-rings and one-sided quasi-duo rings. We also prove that the Koethe conjecture holds if and only if the polynomial ring R[x] is NJ for every NI-ring R.

STRONGLY π-REGULAR MORITA CONTEXTS

  • Chen, Huan-Yin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.91-99
    • /
    • 2003
  • In this paper, we show that if the ring of a Merits context (A, B, M, N, ${\psi},\;{\phi}$) with zero pairings is a strongly $\pi$-regular ring of bounded index if and only if so are A and B. Furthermore, we extend this result to the ring of a Merits context over quasi-duo strongly $\pi$-regular rings.

ON RINGS WHOSE ESSENTIAL MAXIMAL RIGHT IDEALS ARE GP-INJECTIVE

  • Jeong, Jeonghee;Kim, Nam Kyun
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.399-407
    • /
    • 2022
  • In this paper, we continue to study the von Neumann regularity of rings whose essential maximal right ideals are GP-injective. It is proved that the following statements are equivalent: (1) R is strongly regular; (2) R is a 2-primal ring whose essential maximal right ideals are GP-injective; (3) R is a right (or left) quasi-duo ring whose essential maximal right ideals are GP-injective. Moreover, it is shown that R is strongly regular if and only if R is a strongly right (or left) bounded ring whose essential maximal right ideals are GP-injective. Finally, we prove that a PI-ring whose essential maximal right ideals are GP-injective is strongly π-regular.

ON INJECTIVITY AND P-INJECTIVITY, IV

  • Chi Ming, Roger Yue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.223-234
    • /
    • 2003
  • This note contains the following results for a ring A : (1) A is simple Artinian if and only if A is a prime right YJ-injective, right and left V-ring with a maximal right annihilator ; (2) if A is a left quasi-duo ring with Jacobson radical J such that $_{A}$A/J is p-injective, then the ring A/J is strongly regular ; (3) A is von Neumann regular with non-zero socle if and only if A is a left p.p.ring containing a finitely generated p-injective maximal left ideal satisfying the following condition : if e is an idempotent in A, then eA is a minimal right ideal if and only if Ae is a minimal left ideal ; (4) If A is left non-singular, left YJ-injective such that each maximal left ideal of A is either injective or a two-sided ideal of A, then A is either left self-injective regular or strongly regular : (5) A is left continuous regular if and only if A is right p-injective such that for every cyclic left A-module M, $_{A}$M/Z(M) is projective. ((5) remains valid if 《continuous》 is replaced by 《self-injective》 and 《cyclic》 is replaced by 《finitely generated》. Finally, we have the following two equivalent properties for A to be von Neumann regula. : (a) A is left non-singular such that every finitely generated left ideal is the left annihilator of an element of A and every principal right ideal of A is the right annihilator of an element of A ; (b) Change 《left non-singular》 into 《right non-singular》in (a).(a).