• Title/Summary/Keyword: quasi-nilpotent part

Search Result 3, Processing Time 0.02 seconds

ON LOCAL SPECTRAL PROPERTIES OF GENERALIZED SCALAR OPERATORS

  • Yoo, Jong-Kwang;Han, Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.305-313
    • /
    • 2010
  • In this paper, we prove that if $T{\in}L$(X) is a generalized scalar operator then Ker $T^p$ is the quasi-nilpotent part of T for some positive integer $p{\in}{\mathbb{N}}$. Moreover, we prove that a generalized scalar operator with finite spectrum is algebraic. In particular, a quasi-nilpotent generalized scalar operator is nilpotent.

ON PREHERMITIAN OPERATORS

  • YOO JONG-KWANG;HAN HYUK
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.53-64
    • /
    • 2006
  • In this paper, we are concerned with the algebraic representation of the quasi-nilpotent part for prehermitian operators on Banach spaces. The quasi-nilpotent part of an operator plays a significant role in the spectral theory and Fredholm theory of operators on Banach spaces. Properties of the quasi-nilpotent part are investigated and an application is given to totally paranormal and prehermitian operators.

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.