• Title/Summary/Keyword: quaternion error model

Search Result 14, Processing Time 0.028 seconds

Equivalent nonlinear error model of SDINS using quaternion (쿼터니언을 이용한 SDINS의 등가 비선형 오차모델)

  • Yoo, Myung-Jong;Jeon, Chang-Bae;Park, Jun-Pyo;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.864-866
    • /
    • 1996
  • The attitude error is expressed using four kinds of quaternion errors. And the explicit relation equations between them are derived four kinds of nonlinear error models of SDINS using the their explicit relation are also proposed for a nonlinear filter which may be available for a system in the presence of a large attitude error the concept of the proposed nonlinear error model is applied to the velocity aided SDINS using a linear Kalman filter and an extended Kalman filter the simulation results reveal a improvement of performance using the nonlinear error model.

  • PDF

Adaptive filter Design for INS/GPS (INS/GPS를 위한 적응필터 구성)

  • Yu Myeong-Jong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.717-725
    • /
    • 2005
  • The adaptive filter is proposed for the INS/GPS. The proposed filter can estimate the variance of the process noise using the residual of the filter. To verify the efficiency of the adaptive filter, it is applied to the loosely-coupled INS/CPS that employs the additive quaternion error model. Simulation results demonstrate that the proposed filter is more effective in estimating the attitude error than EKF.

Equivalent Error Model for Spacecraft Attitude Determination System (인공위성 자세결정 시스템을 위한 등가 오차모델)

  • 조윤철;유명종
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.852-860
    • /
    • 2003
  • We introduce the error models for an attitude determination system(ADS) with gyroscopes and stellar sensor. The ADS error models are derived according to the definition of the reference frame and of the attitude error. The equivalent error models applicable to the attitude determination system with large attitude errors are presented. The simulation results show that the proposed error models improve performance of the attitude determination system.

The General Analysis of an Active Stereo Vision with Hand-Eye Calibration (핸드-아이 보정과 능동 스테레오 비젼의 일반적 해석)

  • Kim, Jin Dae;Lee, Jae Won;Sin, Chan Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.83-83
    • /
    • 2004
  • The analysis of relative pose(position and rotation) between stereo cameras is very important to determine the solution that provides three-dimensional information for an arbitrary moving target with respect to robot-end. In the space of free camera-model, the rotational parameters act on non-linear factors acquiring a kinematical solution. In this paper the general solution of active stereo that gives a three-dimensional pose of moving object is presented. The focus is to achieve a derivation of linear equation between a robot′s end and active stereo cameras. The equation is consistently derived from the vector of quaternion space. The calibration of cameras is also derived in this space. Computer simulation and the results of error-sensitivity demonstrate the successful operation of the solution. The suggested solution can also be applied to the more complex real time tracking and quite general and are applicable in various stereo fields.

The General Analysis of an Active Stereo Vision with Hand-Eye Calibration (핸드-아이 보정과 능동 스테레오 비젼의 일반적 해석)

  • 김진대;이재원;신찬배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.89-90
    • /
    • 2004
  • The analysis of relative pose(position and rotation) between stereo cameras is very important to determine the solution that provides three-dimensional information for an arbitrary moving target with respect to robot-end. In the space of free camera-model, the rotational parameters act on non-linear factors acquiring a kinematical solution. In this paper the general solution of active stereo that gives a three-dimensional pose of moving object is presented. The focus is to achieve a derivation of linear equation between a robot's end and active stereo cameras. The equation is consistently derived from the vector of quaternion space. The calibration of cameras is also derived in this space. Computer simulation and the results of error-sensitivity demonstrate the successful operation of the solution. The suggested solution can also be applied to the more complex real time tracking and quite general and are applicable in various stereo fields.

SDINS Equivalent Error Models Using the Lyapunov Transformation (Lyapunov 변환을 이용한 SDINS 등가 오차모델)

  • Yu, Myeong-Jong;Lee, Jang-Gyu;Park, Chan-Guk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.167-177
    • /
    • 2002
  • In Strapdown Inertial Navigation System(SDINS), error models based on previously proposed conversion equations between the attitude errors, are only valid in case the attitude errors are small. The SDINS error models have been independently studied according to the definition of the reference frame and of the attitude error. The conversion equations between the attitude errors applicable to SDINS with large attitude errors are newly derived. Lyapunov transformation matrices are also derived from the obtained results. Furthermore the general method, which is independent of the attitude error and the reference frame to derive SDINS error model, is proposed using the Lyapunov transformation.

A Robust Extended Filter Design for SDINS In-Flight Alignment

  • Yu, Myeong-Jong;Lee, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.520-526
    • /
    • 2003
  • In the case of a strapdown inertial navigation system (SDINS) with sizeable attitude errors, the uncertainty caused by linearization of the system degrades the performance of the filter. In this paper, a robust filter and various error models for the uncertainty are presented. The analytical characteristics of the proposed filter are also investigated. The results show that the filter does not require the statistical property of the system disturbance and that the region of the estimation error depends on a freedom parameter in the worst case. Then, the uncertainty of the SDINS is derived. Depending on the choice of the reference frame and the attitude error state, several error models are presented. Finally, various in-flight alignment methods are proposed by combining the robust filter with the error models. Simulation results demonstrate that the proposed filter effectively improves the performance.

An Efficient Attitude Reference System Design Using Velocity Differential Vectors under Weak Acceleration Dynamics

  • Lee, Byungjin;Yun, Sukchang;Lee, Hyung-Keun;Lee, Young Jae;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.222-231
    • /
    • 2016
  • This paper proposes a new method achieving computationally efficient attitude reference system for low cost strapdown sensors and microprocessor platform. The main idea in this method is to define and compare velocity differential vectors, geometrically computed from INS and GPS data with different update rate, for generating attitude error measurements which is further used for filter construction. A quaternion based Kalman filter configuration is applied for the attitude estimation with the adapted measurement model of differential vector comparison. Linearized model for Extended Kalman Filter and low pass filtered characteristics of measurement greatly extend the affordability of the proposed algorithm to the field of simple low cost embedded systems. For performance verification, experiment are done employing a practical low cost MEMS IMU and GPS receiver specification. Performance comparison with a high grade navigation system demonstrated good estimation result.

Transfer alignment for strapdown inertial navigation system by angle matching method (스트랩다운 관성항법장치의 각을 이용한 초기전달 정렬기법)

  • 송기원;전창배;김현백
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.29-33
    • /
    • 1993
  • This paper suggests Kalman filter formulation using by precision GINS output angle for SDINS initial transfer alignment of missile. The Kalman filter model was derived from quaternion parameters and the transfer alignment system by angle matching method satisfies azimuth observability in horizontal angular motion. The estimated error of SDINS attitude settles to less 3mrad(1.sigma.) in 200 seconds at proper sea state.

  • PDF

Spacecraft Attitude Determination Study using Predictive Filter (Predictive Filter를 이용한 인공위성 자세결정 연구)

  • Choi , Yoon-Hyuk;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.48-56
    • /
    • 2005
  • Predictive filter theory proposed recently can be characterized by inherent advantages of estimating modelling error and overcoming the disadvantage of the Kalman filter theory. A one-step ahead error is minimized to produce optimized filter performance in the form of the predictive filter. The main advantage of this filter lies in the ability to estimate both state vector and system model error. In this paper, attitude estimation results based upon the predictive filter theory is addressed. Mathematical formulation for estimating bias signal is peformed by using the predictive filter theory, and attitude estimation based upon vector observation is presented. From the results of this study, the potential applicability of the predictive filter is highlighted.