• Title/Summary/Keyword: queuing analysis

Search Result 132, Processing Time 0.022 seconds

Design Algorithm & Datagram Analysis of UDP using Queuing (Queuing을 이용한 UDP 설계 알고리즘과 데이터그램 분석)

  • Eom, Gum-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.231-233
    • /
    • 2004
  • Queuing is waiting lines which play routing service when packet entered. Queuing is decide how and whom is going to provide priority service. This is kind of first in first out(FIFO) or weighted fair queuing(WFQ) method. In this study, UDP design using WFQ way to serve to provide service evenly and rapidly in network. Also in actuality internet, datagram analyzed by packet captured. Queuing services through the requesting port number, input, output, output queuing creation & delete, message request by internet control message protocol(ICMP). Queuing designed in control block module, input queues, input/output module composition. In conclusion, I have confirm queuing result of WFQ method by the datagram information analyzed.

  • PDF

Crack analysis of reinforced concrete members with and without crack queuing algorithm

  • Ng, P.L.;Ma, F.J.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • Due to various numerical problems, crack analysis of reinforced concrete members using the finite element method is confronting with substantial difficulties, rendering the prediction of crack patterns and crack widths a formidable task. The root cause is that the conventional analysis methods are not capable of tracking the crack sequence and accounting for the stress relief and re-distribution during cracking. To address this deficiency, the crack queuing algorithm has been proposed. Basically, at each load increment, iterations are carried out and within each iteration step, only the most critical concrete element is allowed to crack and the stress re-distribution is captured in subsequent iteration by re-formulating the cracked concrete element and re-analysing the whole concrete structure. To demonstrate the effectiveness of the crack queuing algorithm, crack analysis of concrete members tested in the literature is performed with and without the crack queuing algorithm incorporated.

Analysis of queuing mine-cars affecting shaft station radon concentrations in Quzhou uranium mine, eastern China

  • Hong, Changshou;Zhao, Guoyan;Li, Xiangyang
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.453-461
    • /
    • 2018
  • Shaft stations of underground uranium mines in China are not only utilized as waiting space for loaded mine-cars queuing to be hoisted but also as the principal channel for fresh air taken to working places. Therefore, assessment of how mine-car queuing processes affect shaft station radon concentration was carried out. Queuing network of mine-cars has been analyzed in an underground uranium mine, located in Quzhou, Zhejiang province of Eastern China. On the basis of mathematical analysis of the queue network, a MATLAB-based quasi-random number generating program utilizing Monte-Carlo methods was worked out. Extensive simulations were then implemented via MATALB operating on a DELL PC. Thereafter, theoretical calculations and field measurements of shaft station radon concentrations for several working conditions were performed. The queuing performance measures of interest, like average queuing length and waiting time, were found to be significantly affected by the utilization rate (positively correlated). However, even with respect to the "worst case", the shaft station radon concentration was always lower than $200Bq/m^3$. The model predictions were compared with the measuring results, and a satisfactory agreement was noted. Under current working conditions, queuing-induced variations of shaft station radon concentration of the study mine are not remarkable.

Queuing Analysis for Overlay/Underlay Spectrum Access in Cognitive Radio Networks

  • Do, Cuong T.;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.190-192
    • /
    • 2012
  • In this paper, we present theoretical queuing analysis for hybrid overlay/underlay Cognitive Radio (CR) system by applying M/M/1 queuing model where the rate of arrival and the service capacity are subject to Poisson alterations. Numerical results are used to prove a high degree of accuracy for the derived expressions. The result can be used as a benchmark to evaluate the performance of a hybrid overlay/underlay CR system.

Discrete-Time Queuing Analysis of Dual-Plane ATM Switch with Synchronous Connection Control

  • Choi, Jun-Kyun
    • ETRI Journal
    • /
    • v.19 no.4
    • /
    • pp.326-343
    • /
    • 1997
  • In this paper, we propose an ATM switch with the rate more than gigabits per second to cope with future broadband service environments. The basic idea is to separate the connection control flow from the data information flow inside the switch. The proposed switch has a dual-plane switch matrix with the synchronous control algorithm. The queuing behaviors of the proposed switch are shown by the discrete-time queuing analysis. Numerical analyses are taken both in the non-blocking crossbar switch and the banyan switch with internal blocking. Results show that a proposed dual-plane $16{\times}16$ switch would have the acceptable performance with maximum throughput of about 95 percent.

  • PDF

On the QoS Behavior of Self-Similar Traffic in a Converged ONU-BS Under Custom Queueing

  • Obele, Brownson Obaridoa;Iftikhar, Mohsin;Kang, Min-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.286-297
    • /
    • 2011
  • A novel converged optical network unit (ONU)-base station (BS) architecture has been contemplated for next-generation optical-wireless networks. It has been demonstrated through high quality studies that data traffic carried by both wired and wireless networks exhibit self-similar and long range dependent characteristics; attributes that classical teletraffic theory based on simplistic Poisson models fail to capture. Therefore, in order to apprehend the proposed converged architecture and to reinforce the provisioning of tightly bound quality of service (QoS) parameters to end-users, we substantiate the analysis of the QoS behavior of the ONU-BS under self-similar and long range dependent traffic conditions using custom queuing which is a common queuing discipline. This paper extends our previous work on priority queuing and brings novelty in terms of presenting performance analysis of the converged ONU-BS under realistic traffic load conditions. Further, the presented analysis can be used as a network planning and optimization tool to select the most robust and appropriate queuing discipline for the ONU-BS relevant to the QoS requirements of different applications.

Impact Evaluation of DDoS Attacks on DNS Cache Server Using Queuing Model

  • Wang, Zheng;Tseng, Shian-Shyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.895-909
    • /
    • 2013
  • Distributed Denial-of-Service (DDoS) attacks towards name servers of the Domain Name System (DNS) have threaten to disrupt this critical service. This paper studies the vulnerability of the cache server to the flooding DNS query traffic. As the resolution service provided by cache server, the incoming DNS requests, even the massive attacking traffic, are maintained in the waiting queue. The sojourn of requests lasts until the corresponding responses are returned from the authoritative server or time out. The victim cache server is thus overloaded by the pounding traffic and thereafter goes down. The impact of such attacks is analyzed via the model of queuing process in both cache server and authoritative server. Some specific limits hold for this practical dual queuing process, such as the limited sojourn time in the queue of cache server and the independence of the two queuing processes. The analytical results are presented to evaluate the impact of DDoS attacks on cache server. Finally, numerical results are provided for further analysis.

Comparative Performance Analysis of Network Security Accelerator based on Queuing System

  • Yun Yeonsang;Lee Seonyoung;Han Seonkyoung;Kim Youngdae;You Younggap
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.269-273
    • /
    • 2004
  • This paper presents a comparative performance analysis of a network accelerator model based on M/M/l queuing system. It assumes the Poisson distribution as its input traffic load. The decoding delay is employed as a performance analysis measure. Simulation results based on the proposed model show only $15\%$ differences with respect to actual measurements on field traffic for BCM5820 accelerator device. The performance analysis model provides with reasonable hardware structure of network servers, and can be used to span design spaces statistically.

  • PDF

Performance Analysis of Cellular Networks with D2D communication Based on Queuing Theory Model

  • Xin, Jianfang;Zhu, Qi;Liang, Guangjun;Zhang, Tiaojiao;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2450-2469
    • /
    • 2018
  • In this paper, we develop a spatiotemporal model to analysis of cellular user in underlay D2D communication by using stochastic geometry and queuing theory. Firstly, by exploring stochastic geometry to model the user locations, we derive the probability that the SINR of cellular user in a predefined interval, which constrains the corresponding transmission rate of cellular user. Secondly, in contrast to the previous studies with full traffic models, we employ queueing theory to evaluate the performance parameters of dynamic traffic model and formulate the cellular user transmission mechanism as a M/G/1 queuing model. In the derivation, Embedded Markov chain is introduced to depict the stationary distribution of cellular user queue status. Thirdly, the expressions of performance metrics in terms of mean queue length, mean throughput, mean delay and mean dropping probability are obtained, respectively. Simulation results show the validity and rationality of the theoretical analysis under different channel conditions.

A New Starting Potential Fair Queuing Algorithm with O(1) Virtual Time Computation Complexity

  • Kwak, Dong-Yong;Ko, Nam-Seok;Kim, Bong-Tae;Park, Hong-Shik
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.475-488
    • /
    • 2003
  • In this paper, we propose an efficient and simple fair queuing algorithm, called new starting potential fair queuing (NSPFQ), which has O(1) complexity for virtual time computation and also has good delay and fairness properties. NSPFQ introduces a simpler virtual time recalibration method as it follows a rate-proportional property. The NSPFQ algorithm recalibrates the system virtual time to the minimum virtual start time among all possible virtual start times for head-of-line packets in backlogged sessions. Through analysis and simulation, we show that the proposed algorithm has good delay and fairness properties. We also propose a hardware implementation framework for the scheduling algorithm.

  • PDF