• Title/Summary/Keyword: radial stress

Search Result 416, Processing Time 0.02 seconds

Characterization of Radial Stress in Curved Beams

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2009
  • Curved glued laminated timber (glulam) is rapidly coming into the domestic modern timber frame buildings and predominant in building construction. The radial stress is frequently occurred in curved beams and is a critical design parameter in curved glulam. Three models, Wilson equation, Exact solution and Approximation equation were introduced to determine the radial stress of curved glulam under pure bending condition. It is obvious that radial stress distribution between small radius and large radius was different due to slight change of neutral plane location to center line. If the beam design with extremely small radius, it should be considered to determine the exact location of maximum radial stress. The current standard KSF 3021 was reviewed and would be considered some adjustment determining the optimum radius in curved glulam. Current design principle is that the stress factor is given by the curvature term only in constant depth of the beam, but like tapered or small radius of beams, the stress factor by Wilson equation was underestimated. So current design formula should be considered to improvement for characterizing the radial stress factor under pure bending condition.

Study on the Radial Stress Considering Mechanical Characteristics of Substrate in Wound Rolls (롤투롤 와인딩 시스템에서 소재 특성을 고려한 반경 방향 응력에 대한 연구)

  • Kim, Seongyong;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.115-119
    • /
    • 2016
  • Winding is one of the major processes in roll-to-roll systems. Taper tension profile in a winding determines the distribution of stress in the radial direction, i.e., the radial stress in the wound rolls. Maximum radial stress is major cause of material defect, and this study has been actively proceeded. Traditional models of radial stress model were focused on flexible and light substrate. In this study, we developed an advanced radial stress model including effects of both these parameters(weight and stiffness) on the radial stress. The accuracy of the developed model was verified through FEM(Finite Element Method) analysis. FEM result of maximum radial stress value corresponds to 99 % in comparison to result with the model. From this study, the material defects does not occur when the steel winding. And steel industry can be applied to improve the winding process.

An experimental study on the hydraulic fracturing of radial horizontal wells

  • Yan, Chuanliang;Ren, Xu;Cheng, Yuanfang;Zhao, Kai;Deng, Fucheng;Liang, Qimin;Zhang, Jincheng;Li, Yang;Li, Qingchao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.535-541
    • /
    • 2019
  • Combining the radial well drilling and hydraulic fracturing technique, the production capacity of the reservoirs with low-permeability can be improved effectively. Due to the existence of radial holes, the stress around the well is redistributed, and the initiation and propagation of hydraulic fractures are different with those in traditional hydraulic fracturing. Therefore, it is necessary to study the influences of radial horizontal wells on hydraulic fracturing. The laboratory experiment was conducted to simulate the hydraulic fracturing on the physical model with radial holes. The experimental results showed that, compared with the borehole without radial holes, the sample with radial hole in the direction of maximum horizontal stress was fractured with significantly lower pressure. As the angle between direction of the horizontal hole and the maximum horizontal stress increased, the breakdown pressure grew. While when the radial hole was drilled towards the direction of the minimum horizontal stress, the breakdown pressure increased to that needed in the borehole without radial holes. When the angle between the radial hole and the maximum horizontal stress increase, the pressure required to propagate the fractures grew apparently, and the fracture become complex. Meanwhile, the deeper the radial hole drilled, the less the pressure was needed for fracturing.

A unified method for stresses in FGM sphere with exponentially-varying properties

  • Celebi, Kerimcan;Yarimpabuc, Durmus;Keles, Ibrahim
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.823-835
    • /
    • 2016
  • Using the Complementary Functions Method (CFM), a general solution for the one-dimensional steady-state thermal and mechanical stresses in a hollow thick sphere made of functionally graded material (FGM) is presented. The mechanical properties are assumed to obey the exponential variations in the radial direction, and the Poisson's ratio is assumed to be constant, with general thermal and mechanical boundary conditions on the inside and outside surfaces of the sphere. In the present paper, a semi-analytical iterative technique, one of the most efficient unified method, is employed to solve the heat conduction equation and the Navier equation. For different values of inhomogeneity constant, distributions of radial displacement, radial stress, circumferential stress, and effective stress, as a function of radial direction, are obtained. Various material models from the literature are used and corresponding temperature distributions and stress distributions are computed. Verification of the proposed method is done using benchmark solutions available in the literature for some special cases and virtually exact results are obtained.

Exact solutions of the piezoelectric transducer under multi loads

  • Zhang, Taotao;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.413-431
    • /
    • 2011
  • Under the external shearing stress, the external radial stress and the electric potential simultaneously, the piezoelectric hollow cylinder transducer is studied. With the Airy stress function method, the analytical solutions of this transducer are obtained based on the theory of piezo-elasticity. The solutions are compared with the finite element results of Ansys and a good agreement is found. Inherent properties of this piezoelectric cylinder transducer are presented and discussed. It is very helpful for the design of the bearing controllers.

A Stress Analysis of Structural Element Using Meshfree Method(RPIM) (무요소법(RPIM)을 이용한 구조 요소의 응력해석)

  • Han, Sang-Eul;Lee, Sang-Ju;Joo, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.495-500
    • /
    • 2007
  • A Meshfree is a method used to establish algebraic equations of system for the whole problem domain without the use of a predefined mesh for the domain discretization. A point interpolation method is based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity. Furthermore, the interpolation function passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshfree methods based on the moving least-squares approximation. This study aims to investigate a stress analysis of structural element between a meshfree method and the finite element method. Examples on cantilever type plate and stress concentration problems show that the accuracy and convergence rate of the meshfree methods are high.

  • PDF

Studies on Rheological Properties of Rice Plants at the Booting Stage (이삭 밸 때 벼의 리올러지 특성(特性)에 관한 연구(硏究))

  • Hu, Y.K.;Lee, S.W.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.1
    • /
    • pp.37-48
    • /
    • 1991
  • Rice plants are subjected to various forces such as natural force of wind and mechanical force of cultivating machines. Rheological behavior of the rice stem can be expressed in terms of three variables : stress, relaxation and time. The objectives of this study are to examine stress relaxation, creep and recovery characteristics on the rice stem in case of axial and radial loading. Stress relaxation with time was studied on three levels of loading rate and on four levels of applied stress. The results were summarized as follows : 1. The hysterisis losses of the rice stem distinctly observed at the radial compression in comparison with axial compression. The hysterisis loss implied that the stem to absorbed energy without being deformed beyond the yield point. 2. Ageneralized Maxwell model consisting of three elements gave a good description of the relaxation behavior of the rice stem. Rate of loading was more significant on the observed relaxation behavior within the short relaxation time, but there were little influences of rate of loading on the relaxation time. 3. The stress relaxation intensity and the residual stress increased in magnitude as the applied stress increased, but the relaxation time was little affected by the applied stress. 4. The coefficients of the stress relaxation model showed much differences in the radial compression and the axial compression, especially the higher relaxation stress of the third element was observed in the radial compression. 5. The behaviors of rice stem in creep and recovery test also might be represented by a four element Burger's model. But the coefficients of the creep model were different from those of the recovery model. 6. The steady-state phenomena of creep appeared at the stress larger than 20 MPa in Samkang and 1.8 MPa in Whajin. 7. The elastic modulus of the stem showed the range from 40 to 60 MPa. It could be considered, as a result, the rice stems had viscoelastic properties.

  • PDF

HEAT-UP AND COOL-DOWN TEMPERATURE-DEPENDENT HYDRIDE REORIENTATION BEHAVIORS IN ZIRCONIUM ALLOY CLADDING TUBES

  • Won, Ju-Jin;Kim, Myeong-Su;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.681-688
    • /
    • 2014
  • Hydride reorientation behaviors of PWR cladding tubes under typical interim dry storage conditions were investigated with the use of as-received 250 and 485ppm hydrogen-charged Zr-Nb alloy cladding tubes. In order to evaluate the effect of typical cool-down processes on the radial hydride precipitation, two terminal heat-up temperatures of 300 and $400^{\circ}C$, as well as two terminal cool-down temperatures of 200 and $300^{\circ}C$, were considered. In addition, two cooling rates of 2.5 and $8.0^{\circ}C/min$ during the cool-down processes were taken into account along with zero stress or a tensile hoop stress of 150MPa. It was found that the 250ppm hydrogen-charged specimen experiencing the higher terminal heat-up temperature and the lower terminal cool-down temperature generated the highest number of radial hydrides during the cool-down process under 150MPa hoop tensile stress, which may be explained by terminal solid hydrogen solubilities for precipitation, and dissolution and remaining circumferential hydrides at the terminal heat-up temperatures. In addition, the slower cool-down rate generates the larger number of radial hydrides due to a cooling rate-dependent, longer residence time at a relatively high temperature that can accelerate the radial hydride nucleation and growth.

Analysis of Coaxial Magnetic Gear with Low Gear Ratios for Application in Counter Rotating Systems

  • Shin, H.M.;Chang, J.H.
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2015
  • This paper describes the electromagnetic and mechanical characteristics of coaxial magnetic gear (CMG) with a low gear ratio. The analysis models are restricted to a CMG with a gear ratio of less than 2. The electromagnetic characteristics including transmitted torque and iron losses are presented according to the variation of the gear ratio. The pole pairs of high speed rotor are chosen as 6, 8 and 10 by considering the torque capability. As the gear ratio approaches 1, both iron losses on the ferromagnetic materials and eddy current losses on the rotor permanent magnets are increased. The radial and tangential forces on the modulating pieces are calculated using the Maxwell stress tensor. When the maximum force is exerted on the modulating pieces, the mechanical characteristics including stress and deformation are derived by structural analysis. In CMG models with a low gear ratio, the maximum radial force acting on modulating pieces is larger than that in CMG models with a high gear ratio, and the normal stress and normal deformation are increased in a CMG with a low gear ratio. Therefore, modulating pieces should be designed to withstand larger radial forces in CMG with a low gear ratio compared to CMG with a high gear ratio.

Stress Analysis for Torsional Spring Box of Radial Dual Mass Flywheel (원판형 이중 질량 플라이휠의 비틀림 스프링 장치의 응력해석에 관한 연구)

  • 최병기;노승훈;남욱희;김광수;최성종;이춘열;채영석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.147-154
    • /
    • 2003
  • Radial Dual Mass Flywheel(RDMF) is designed to reduce torsional vibration and noise occurring in automotive powertrain. In this paper, finite element method is used to evaluate stress level and critical area of the torsional spring box, a major part of RDNF system. In finite element analysis, both static and dynamic loadings are considered and it is found that the most critical spot is the welded zone of spring box. Also, fatigue test is performed and fractured surfaces are examined to find fatigue stress level by experiment.