• Title/Summary/Keyword: radiation mode

Search Result 480, Processing Time 0.028 seconds

Introduction to Ground Radiation Antenna for Mobile Devices (휴대 단말기 그라운드 방사 안테나(GradiANT: Ground Radiation Antenna) 기술 소개)

  • Kim, Jihoon;Moon, Sungjin;Kim, Hyeongdong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.951-959
    • /
    • 2015
  • Ground radiation antenna in mobile devices is becoming an issue for satisfying both miniaturization and high performance. Ground radiation antenna controls the characteristic mode of the ground plane and couples this mode with the ground radiation antenna, thereby having good radiation performance. In this paper, the characteristic mode theory and applications of ground radiation antenna will be introduced. The operating mechanism of single band, wideband and dual-band ground radiation antennas are studied.

Treatment Plan Delivery Accuracy of the ViewRay System in Two-Headed Mode

  • Park, Jong Min;Park, So-Yeon;Wu, Hong-Gyun;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.169-174
    • /
    • 2016
  • The aim of this study is to investigate the delivery accuracy of intensity-modulated radiation therapy (IMRT) plans in the two-headed mode of the ViewRay$^{TM}$ system in comparison with that of the normal operation treatment plan of the machine. For this study, a total of eight IMRT plans and corresponding verification plans were generated (four head and neck, two liver, and two prostate IMRT plans). The delivered dose distributions were measured using ArcCHECK$^{TM}$ with the insertion of an ionization chamber. We measured the delivered dose distributions in three-headed mode (normal operation of the machine), two-headed mode with head 1 disabled, two-headed mode with head 2 disabled, and two-headed mode with head 3 disabled. Therefore, a total of four measurements were performed for each IMRT plan. The global gamma passing rates (3%/3 mm) in three-headed mode, head 1 disabled, head 2 disabled, and head 3 disabled were $99.9{\pm}0.1%$, $99.8{\pm}0.3%$, $99.6{\pm}0.7%$, and $99.7{\pm}0.4%$, respectively. The difference in the gamma passing rates of the three- and two-headed modes was insignificant. With 2%/2 mm, the rates were $96.6{\pm}3.6%$, $97.2{\pm}3.5%$, $95.7{\pm}6.2%$, and $95.5{\pm}4.3%$, respectively. Between three-headed mode and head 3 disabled, a statistically significant difference was observed with a p-value of 0.02; however, the difference was minimal (1.1%). The chamber readings showed differences of approximately 1% between three- and two-headed modes, which were minimal. Therefore, the treatment plan delivery in the two-headed mode of the ViewRay$^{TM}$ system seems accurate and robust.

Evaluation of the Lens-absorbed Dose of the Scattered Radiation Generated During Tomotherapy IMRT to the H&N Cancer Patient

  • Choi, Jae-Won;Lee, Hae-Kag;Cho, Jae-Hwan;Choi, Cheon Woong;Ju, Myung Sik;Chang, Bok Soon;Park, Cheol-Soo
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.141-145
    • /
    • 2017
  • This paper uses a glass dosimeter to evaluate the lens-absorbed dose of scattered radiation generated in tomotherapy intensity modulated radiation therapy (IMRT). The head and neck portion of the rando phantom was subjected to a CT scan. The tomotherapy plan was designed to ensure delivery of the prescribed total 70 Gy day 2.2 Gy. With the lens portion of the glass dosimeter, a 5mm bolus was subjected to the scattered radiation treatment, and the dose was measured in each of the three megavoltage CT (MVCT) modes. The result is multiplied by 30 times and was determined once as the mean value. The measurement at the MVCT Coarse mode is RT mode 10.797 mGy, that for the Normal mode is 13.360 mGy, for the Fine mode is a maximum of 22.872 mGy, and for the treatment mode is 895.830 mGy. A small amount of scattered radiation in the MVCT is measured in the lens scattered radiation, but scattered radiation during treatment was measured to be near 1 Gy on the lens. Compared to a one-time radiation treatment of 2.2 Gy, the survey showed something unexpected in that it was half the value of that research to the patient. Therefore, will be aware of how much of an influence there will be on sensitive organs, such as the lens by scattered radiation generated during intensity modulated radiation therapy.

Radiation Characteristics of a Dual Mode Inductor Loaded Patch Antenna (이중 모드 Inductor Loaded 패치 안테나의 방사 특성)

  • Kwak, Eun-Hyuk;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.7
    • /
    • pp.28-34
    • /
    • 2011
  • Radiation characteristics of a dual-mode inductor loaded patch antenna using zeroth order resonance and half wavelength resonance are investigated. The isolation between two radiation patterns from the two different modes is improved by increasing the forward radiation and decreasing the horizontal radiation of half wavelength resonance mode. The frequency difference between the two resonant frequencies increases as the dielectric constant of the antenna substrate decreases and the operating frequency increases.

A Numerical Model of an Edge-clamped Rectangular Plate Based on a Mode Method to Predict Acoustic Radiation Characteristics (모드법에 의한 클램프 조건 사각평판의 음향방사특성 예측모델)

  • Yoo, Ji-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.374-383
    • /
    • 2011
  • A numerical model based on a mode method coupling beams and a rectangular plate is proposed to estimate radiation characteristics of an edge-clamped rectangular plate. The radiation efficiency and radiation power in the audio frequency range including the critical frequency can be predicted. The proposed model is rather simple and straightforward and gives reliable results comparing to the previous studies. The estimated radiation characteristics are compared to those of the pinned condition plates and also to those based on the formulae proposed by Maidanik. The radiation efficiency of the clamped plate seems a little higher than that of the pinned plate in the frequency range of corner and edge modes. It is explicitly shown that the power as well as efficiency at high frequencies is not influenced by these edge boundary conditions.

Study of Absorbed Dose and Effective Dose for Prostate Cancer Image Guided Radiation Therapy using kV Cone Beam Computed Tomography (kV Cone Beam Computed Tomography (CBCT)를 이용한 전립선암 영상유도방사선치료 시 흡수선량 및 유효선량에 관한 고찰)

  • Na, Jong-Eok;Lee, Do-Geun;Kim, Jin-Soo;Baek, Geum-Mun;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • Purpose: To evaluate the results of absorbed and effective doses using two different modes, standard mode (A-mode) and low-dose mode (B-mode) settings for prostate cancer IGRT from CBCT. Materials and Methods: This experimental study was obtained using Clinac iX integrated with On Board Imager (OBI) System and CBCT. CT images were obtained using a GE Light Speed scanner. Absorbed dose to organs from ICRP recommendations and effective doses to body was performed using A-mode and B-mode CBCT. Measurements were performed using a Anderson rando phantom with TLD-100 (Thermoluminescent dosimeters). TLD-100 were widely used to estimate absorbed dose and effective dose from CBCT with TLD System 4000 HAWSHAW. TLD-100 were calibrated to know sensitivity values using photon beam. The measurements were repeated three times for prostate center. Then, Evaluations of effective dose and absorbed dose were performed among the A-mode and B-mode CBCT. Results: The prostate absorbed dose from A-mode and B mode CBCT were 5.5 cGy 1.1 cGy per scan. Respectively Effective doses to body from A mode and B-mode CBCT were 19.1 mSv, 4.4 mSv per scan. Effective dose from A-mode CBCT were approximately 4 times lower than B-mode CBCT. Conclusion: We have shown that it is possible to reduce the effective dose considerably by low dose mode(B-mode) or lower mAs CBCT settings for prostate cancer IGRT. Therefore, we should try to select B-mode or low condition setting to decrease extra patient dose during the IGRT for prostate cancer as possible.

  • PDF

Evaluation of the Accuracy and usability of Trigger mode in Respiratory Gated Radiation Therapy (호흡동조방사선치료를 위한 Trigger mode 투시영상 획득 시 호흡 속도에 따른 정확성 평가 - Phantom Study)

  • Park, je wan;Kim, min su;Um, ki cheon;Choi, seong hoon;Song, heung kwon;Yoon, in ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.25-33
    • /
    • 2021
  • Purpose : The purpose of this study is to evaluate the accuracy and usefulness of the Trigger mode for the Respiratory Gated Radiation Therapy (RGRT) Materials and methods : A QUASAR respiratory phantom that inserted a 3 mm fiducial marker (a gold marker) was used to estimate the accuracy of the Trigger mode. And the 20 bpm was used as reference respiration rate in this study. The marker that placed at the center of the phantom was contoured, and the lower threshold of a gating window was fixed at 2.0 mm using an OBI with Truebeam STxTM. The upper threshold was measured every 0.5 mm from 1.0 mm to 3.0 mm. The respiration rates were changed every 10 bpm from 10 bpm to 60 bpm. We repeatedly measured five times to check the error rate of the trigger mode in the same condition. Result : The differences of a distance from a peak phase to upper threshold, 1.0 to 3.0 mm at a 20 bpm as a reference for 3 days in a row were 0.68±0.05 mm, 0.91±0.03 mm, 1.23±0.03 mm, 1.42±0.04 mm, and 1.66±0.06 mm, respectively. Measurement result of changes in respiratory rate compared to baseline respiratory rate in maximum absolute difference. The coefficient of determination (R2) to estimate the correlation between the respiration velocity and variation of absolute difference was on average 0.838, 0.887, 0.770, 0.850, and 0.906. The p-values of all the variables were below 0.05. Conclusion : Using Trigger mode during respiratory gated radiation therapy (RGRT), accuracy and usefulness of trigger mode at reference breathing rate were confirmed. However, inaccuracies depending on the rate of breathing it could be uncertain in case of respiration rate is faster than 20 bpm as a standard respiration rate compared to slower than 20 bpm. Consequently, when conducting a RGRT using the trigger mode, real time monitoring is required with well educated respiration.

A Study on the Construction of MVCT Dose Calculation Model by Using Dosimetry Check™ (Dosimetry Check™를 이용한 MVCT 선량계산 모델 구축에 관한 연구)

  • Um, Ki-Cheon;Kim, Chang-Hwan;Jeon, Soo-Dong;Back, Geum-Mun
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.431-441
    • /
    • 2020
  • The purpose of this study was to construct a model of MVCT(Megavoltage Computed Tomography) dose calculation by using Dosimetry Check™, a program that radiation treatment dose verification, and establish a protocol that can be accumulated to the radiation treatment dose distribution. We acquired sinogram of MVCT after air scan in Fine, Normal, Coarse mode. Dosimetry Check™(DC) program can analyze only DICOM(Digital Imaging Communications in Medicine) format, however acquired sinogram is dat format. Thus, we made MVCT RC-DICOM format by using acquired sinogram. In addition, we made MVCT RP-DICOM by using principle of generating MLC(Multi-leaf Collimator) control points at half location of pitch in treatment RP-DICOM. The MVCT imaging dose in fine mode was measured by using ionization chamber, and normalized to the MVCT dose calculation model, the MVCT imaging dose of Normal, Coarse mode was calculated by using DC program. As a results, 2.08 cGy was measured by using ionization chamber in Fine mode and normalized based on the measured dose in DC program. After normalization, the result of MVCT dose calculation in Normal, Coarse mode, each mode was calculated 0.957, 0.621 cGy. Finally, the dose resulting from the process for acquisition of MVCT can be accumulated to the treatment dose distribution for dose evaluation. It is believed that this could be contribute clinically to a more realistic dose evaluation. From now on, it is considered that it will be able to provide more accurate and realistic dose information in radiation therapy planning evaluation by using Tomotherapy.

Radiation safety for pain physicians: principles and recommendations

  • Park, Sewon;Kim, Minjung;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.35 no.2
    • /
    • pp.129-139
    • /
    • 2022
  • C-arm fluoroscopy is a useful tool for interventional pain management. However, with the increasing use of C-arm fluoroscopy, the risk of accumulated radiation exposure is a significant concern for pain physicians. Therefore, efforts are needed to reduce radiation exposure. There are three types of radiation exposure sources: (1) the primary X-ray beam, (2) scattered radiation, and (3) leakage from the X-ray tube. The major radiation exposure risk for most medical staff members is scattered radiation, the amount of which is affected by many factors. Pain physicians can reduce their radiation exposure by use of several effective methods, which utilize the following main principles: reducing the exposure time, increasing the distance from the radiation source, and radiation shielding. Some methods reduce not only the pain physician's but also the patient's radiation exposure. Taking images with collimation and minimal use of magnification are ways to reduce the intensity of the primary X-ray beam and the amount of scattered radiation. It is also important to carefully select the C-arm fluoroscopy mode, such as pulsed mode or low-dose mode, for ensuring the physician's and patient's radiation safety. Pain physicians should practice these principles and also be aware of the annual permissible radiation dose as well as checking their radiation exposure. This article aimed to review the literature on radiation safety in relation to C-arm fluoroscopy and provide recommendations to pain physicians during C-arm fluoroscopy-guided interventional pain management.

Sound Radiation Characteristics of Rectangular Plates with a Guided Edge Condition (모서리의 경계조건이 가이드 조건인 사각 평판의 음향방사 특성 연구)

  • Yoo, Ji-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.876-883
    • /
    • 2009
  • The radiation of sound from a rectangular plate with a guided edge condition is investigated. By taking this particular boundary condition into account, simple analytical forms of the average radiation efficiency and radiation power based on the modal approach can be found, where the cross-modal terms can average out for all possible point excitation locations. Design variables of the plate such as thickness, aspect ratio, and damping that are closely related to the sound radiation are mainly discussed. The radiation power of the guided plate is found to be governed by the piston mode as well as the critical frequency. While both the radiation efficiency and the radiation power seem to be influenced by thickness and a large aspect ratio, damping loss factor seems less important to the radiation power. It is also shown that no clear corner and edge mode regions may be found for the guided case, unlike the pinned.