• Title/Summary/Keyword: radiation-resistant yeast

Search Result 2, Processing Time 0.016 seconds

A Novel Radiation-Resistant Strain of Filobasidium sp. Isolated from the West Sea of Korea

  • Singh, Harinder;Kim, Haram;Song, Hyunpa;Joe, Minho;Kim, Dongho;Bahn, Yong-Sun;Choi, Jong-Il;Lim, Sangyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1493-1499
    • /
    • 2013
  • A novel radiation-resistant Filobasidium sp. yeast strain was isolated from seawater. Along with this strain, a total of 656 yeast isolates were purified from seawater samples collected from three locations in the West Sea of Korea and assessed for their radiation tolerance. Among these isolates, five were found to survive a 5 kGy radiation dose. The most radiation-resistant strain was classified as Filobasidium sp. based on 18S rDNA sequence analysis and hence was named Filobasidium RRY1 (Radiation-Resistant Yeast 1). RRY1 differed from F. elegans, which is closely related to RRY1, in terms of the optimal growth temperature and radiation resistance, and was resistant to high doses of ${\gamma}$-ionizing radiation ($D_{10}$: 6-7 kGy). When exposed to a high dose of 3 kGy irradiation, the RRY1 cells remained intact and undistorted, with negligible cell death. When these irradiated cells were allowed to recover, the cells fully repaired their genomic DNA within 3 h of growth recovery. This is the first report in which a radiation-resistant response has been investigated at the physiological, morphological, and molecular levels in a strain of Filobasidium sp.

Microbiological Characteristics of Gamma Irradiated and Low-Salted Fermented Squid (감마선 조사된 저염 오징어젓갈 발효의 미생물균총 특성)

  • Kim, Dong-Ho;Kim, Jae-Hun;Yook, Hong-Sun;Ahn, Hyun-Joo;Kim, Jung-Ok;Sohn, Cheon-Bae;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1619-1627
    • /
    • 1999
  • Microbiological characteristics of gamma irradiated low salt squid Jeot-gal were examined. Following the fermentation periods, total bacterial cell, Lactobacillus spp., Staphylococcus spp., Streptococcus spp., Pseudomonas spp. and yeast cell number were counted on their selective media and some acid forming bacteria and Pseudomonas spp. were identified. As the gamma irradiation dose increased, the microbial density of early fermentation phase was reduced and the growth rate was delayed. The repression effects on microbiological growth by gamma irradiation were to be higher as salt concentration increased. Adequate conditions of salt concentration and gamma irradiation for low-salt squid Jeot-gal preparation were 10% and 10 kGy, respectively. Lactobacillus sp. 2, Micrococcus varians and Streptococcus sp. I were isolated from 5% salt containing squid Jeot-gal, and Micrococcus morrhuae was from 20% only while Lactobacillus plantarum and Lactobacillus brevis were widespread. Lactobacillus brevis, Pediococcus halophilus and Pseudomonas diminuta were sensitive and Lactobacillus plantarum, Micrococcus morrhuae and Pseudomonas sp. 3 were resistant to gamma irradiation. The diversity of microflora decreased as salt concentration decreased and gamma irradiation dose increased.

  • PDF