• Title/Summary/Keyword: radical homogeneous equivalent component

Search Result 3, Processing Time 0.021 seconds

NOTES ON A NON-ASSOCIATIVE ALGEBRA WITH EXPONENTIAL FUNCTIONS II

  • Choi, Seul-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.241-246
    • /
    • 2007
  • For the evaluation algebra $F[e^{{\pm}x}]_M\;if\;M=\{{\partial}\}$, then $$Der_{non}(F[e^{{\pm}x}]_M)$$ of the evaluation algebra $(F[e^{{\pm}x}]_M)$ is found in the paper [15]. For $M=\{{\partial},\;{\partial}^2\}$, we find $Der_{non}(F[e^{{\pm}x}]_M))$ of the evaluation algebra $F[e^{{\pm}x}]_M$ in this paper. We show that there is a non-associative algebra which is the direct sum of derivation invariant subspaces.

NOTES ON A NON-ASSOCIATIVE ALGEBRAS WITH EXPONENTIAL FUNCTIONS I

  • CHOI, SEUL HEE
    • Honam Mathematical Journal
    • /
    • v.28 no.2
    • /
    • pp.197-204
    • /
    • 2006
  • For the evaluation algebra $F[e^{{\pm}{\chi}}]_M$, if M={$\partial$}, the automorphism group $Aut_{non}$($F[e^{{\pm}{\chi}}]_M$) and $Der_{non}$($F[e^{{\pm}{\chi}}]_M$) of the evaluation algebra $F[e^{{\pm}{\chi}}]_M$ are found in the paper [12]. For M={${\partial}^n$}, we find $Aut_{non}$($F[e^{{\pm}{\chi}}]_M$) and $Der_{non}$($F[e^{{\pm}{\chi}}]_M$) of the evaluation algebra $F[e^{{\pm}{\chi}}]_M$ in this paper. We show that a derivation of some non-associative algebra is not inner.

  • PDF

NOTES ON A NON-ASSOCIATIVE ALGEBRAS WITH EXPONENTIAL FUNCTIONS III

  • Choi, Seul-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.153-159
    • /
    • 2008
  • For $\mathbb{F}[e^{{\pm}x}]_{\{{\partial}\}}$, all the derivations of the evaluation algebra $\mathbb{F}[e^{{\pm}x}]_{\{{\partial}\}}$ is found in the paper (see [16]). For $M=\{{\partial}_1,\;{\partial}_1^2\},\;Der_{non}(\mathbb{F}[e^{{\pm}x}]_M))$ of the evaluation algebra $\mathbb{F}[e^{{\pm}x},\;e^{{\pm}y}]_M$ is found in the paper (see [2]). For $M=({\partial}_1^2,\;{\partial}_2^2)$, we find $Der_{non}(\mathbb{F}[e^{{\pm}x},\;e^{{\pm}y}]_M))$ of the evaluation algebra $\mathbb{F}[e^{{\pm}x},\;e^{{\pm}y}]_M$ in this paper.