• Title/Summary/Keyword: radius of univalence

Search Result 3, Processing Time 0.021 seconds

UNIFORMLY LOCALLY UNIVALENT FUNCTIONS

  • Song, Tai-Sung
    • The Pure and Applied Mathematics
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 1999
  • A holomorphic function f on D = {z : │z│ < 1} is called uniformly locally univalent if there exists a positive constant $\rho$ such that f is univalent in every hyperbolic disk of hyperbolic radius $\rho$. We establish a characterization of uniformly locally univalent functions and investigate uniform local univalence of holomorphic universal covering projections.

  • PDF

RADIUS OF FULLY STARLIKENESS AND FULLY CONVEXITY OF HARMONIC LINEAR DIFFERENTIAL OPERATOR

  • Liu, ZhiHong;Ponnusamy, Saminathan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.819-835
    • /
    • 2018
  • Let $f=h+{\bar{g}}$ be a normalized harmonic mapping in the unit disk $\mathbb{D}$. In this paper, we obtain the sharp radius of univalence, fully starlikeness and fully convexity of the harmonic linear differential operators $D^{\epsilon}{_f}=zf_z-{\epsilon}{\bar{z}}f_{\bar{z}}({\mid}{\epsilon}{\mid}=1)$ and $F_{\lambda}(z)=(1-{\lambda)f+{\lambda}D^{\epsilon}{_f}(0{\leq}{\lambda}{\leq}1)$ when the coefficients of h and g satisfy harmonic Bieberbach coefficients conjecture conditions. Similar problems are also solved when the coefficients of h and g satisfy the corresponding necessary conditions of the harmonic convex function $f=h+{\bar{g}}$. All results are sharp. Some of the results are motivated by the work of Kalaj et al. [8].

ON A CLASS OF UNIVALENT FUNCTIONS

  • NOOR, KHALIDA INAYAT;RAMADAN, FATMA H.
    • Honam Mathematical Journal
    • /
    • v.15 no.1
    • /
    • pp.75-85
    • /
    • 1993
  • For A and B, $-1{\leq}B<A{\leq}1$, let P[A, B] be the class of functions p analytic in the unit disk E with P(0) = 1 and subordinate to $\frac{1+Az}{1+Bz}$. We introduce the class $T_{\alpha}[A,B]$ of functions $f:f(z)=z+\sum\limits_{n=2}^{{\infty}}a_nz^n$ which are analytic in E and for $z{\in}E$, ${\alpha}{\geq}0$, $[(1-{\alpha}){\frac{f(z)}{z}}+{\alpha}f^{\prime}(z)]{\in}P[A,B]$. It is shown that, for ${\alpha}{\geq}1$, $T_{\alpha}[A,B]$ consists entirely of univalent functions and the radius of univalence for $f{\in}T_{\alpha}[A,B]$, $0<{\alpha}<1$ is obtained. Coefficient bounds and some other properties of this class are studied. Some radii problems are also solved.

  • PDF