• Title/Summary/Keyword: railway plate girder bridge

Search Result 94, Processing Time 0.029 seconds

A Behavior Analysis of Railway Steel Plate Girder Bridge in the Applying Resilient Panel Track System (방진제도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석)

  • Choi, Jung-Youl;Eom, Mac;Kang, Duk-Man;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.717-724
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements (about 59%) and stresses (about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

A Behavior Analysis of Railway Steel Plate Girder Bridge in the applying Resilient Panel Track system (방진궤도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석)

  • Lee, Si-Yong;Eom, Mac;Oh, Soo-Jin;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.437-446
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements(about 59%) and stresses(about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

Analysis of the Characteristics of Dynamic Frequency Responses in Railway Plate Girder Bridges (철도 판형교의 동적응답 주파수 특성에 대한 분석)

  • 오지택;최진유;김현민
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1035-1040
    • /
    • 2002
  • Railway plate girder bridges have characteristics that are not show dominant frequency in dynamic response frequencies like obtained vertical acceleration on the bridge during the train passing because the train loading relatively bigger than the bridge self-weight. This paper experimentally confirmed in FFT result has various frequencies due to inherent characteristic of railway train loading. To establish classification of dynamic frequency range in railway bridge acceleration during the train passing, vibration frequencies result from experimental test are analyzed concerning actuation vibration factors. Factors are train velocity, train type, mass ratio of vehicle/bridge, stiffness of bridge, bridge/track and vehicle/track. From the result, it is proposed that the frequencty classfication table with corresponding factors. Using the proposed table to develop rehabilitation technique of the plate girder bridge, to expect vibration reduction and comfort enhancement of the railway plate girder bridge.

  • PDF

An Experimental and Analytical study on the Steel Plate Girder Railway bridge in the applying External Post-tensioning Method (강철도교에 대한 외부 후긴장 보강공법의 적용에 관한 실험 및 해석적 연구)

  • Park, Young-Hoon;Cho, Sun-Kyu;Choi, Jung-Youl;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.151-159
    • /
    • 2006
  • It analyzed the mechanical behaviors of non-ballasted railway bridge (steel plate girder type) with ballast reinforced on the finite element analysis, field test and laboratory test far the static and dynamic responses. The major objective of this study is to investigate the effects and application of reinforcement for steel plate girder railway bridge by the external post-tensioning method. The reinforcement of non-ballast railway bridge had obviously stable dynamic behaviors due to the additional dead force which was ballast. But in case of static behaviors, static displacements and stresses had increased nearly the allowable values. Therefore we analyzed the mechanical behaviors of non-ballasted railway bridge with ballast reinforced and external post-tensioning reinforced on the finite element analysis and laboratory test for the static and dynamic behavior. As a result, the reinforcement of ballasted railway bridge the external post-tensioning method are obviously effective for the additional dead force which is ballast. The analytical and experimental study are carried out to investigate the post-tension force decrease bending behavior and deflection in composite bridge for serviceability. The servicing railway bridge with ballast reinforced has need of the reasonable reinforcement measures which could be reducing the effect of additional dead load that degradation phenomenon of structure by an unusual. stresses and a drop durability.

Structural performance evaluation of bolted end-plate connections in a half-through railway inclined girder

  • Jung Hyun Kim;Chang Su Shim
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.473-486
    • /
    • 2023
  • A through-railway bridge with an inclined girder has recently been applied to optimize the cross-section of a slender bridge structure in railway bridges. To achieve the additional cross-section optimization effect by the bolted end-plate connection, it is necessary to investigate the application of the bolted end-plate tension connection between the inclined girder and the crossbeam. This basic study was conducted on the application of the bolted end-plate moment connection of crossbeams to half-through girders with inclined webs. The combined behavior of vertical deflection and rotational behavior was observed due to the effect of the web inclination in the inclined girder where the steel crossbeam was connected to the girder by the bolted end-plate moment connection. Therefore, in the experiment, the deflection of the inclined girder was 1.77-2.93 times greater than that of the vertical girder but the lateral deflection of the inclined girder was 0.4 times less than that of the vertical girder. Moreover, the tensile stress of the upper bolts in the inclined girder with low crossbeams was clearly 0.81 times lower than that of the vertical girder. According to the results, the design formula for vertical girders does not reflect the influence of the web inclination. Therefore, this study proposed the design procedures for the inclined girder to apply the bolted end-plate moment connection of the crossbeam to the inclined girder by reflecting the design change factors according to the effect of the web inclination.

Steel Box Girder Bridge Models of Light Rail Transit with HR Plate (HR Plate의 경량전철 강박스거더교 적용모델)

  • Lee, Seong-Haeng;Yim, Chae-Sun;Hwang, Nak-Yuen;Jung, Kyoung-Sup
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.554-562
    • /
    • 2007
  • To increase the demand of HR Plate with thickness up to 22mm, it is necessary that HR Plate is applicable to full member in steel bridge including main girder. In this study, availabilities of the narrow steel box girder of light railway transit with HR Plate width as a main member are discussed. Computational analysis is performed in 15 bridge models of light railway transit with beam element and plate element. As an analysis results, three models in tight railway transit are presented. In conclusion, it is validated that HR Plate can be applying to narrow steel box girder in the light railway transit.

A Dynamic Behavior Analysis of composite Few Plate Girder Railway Bridge under Variety of Track systems (소수주형 철도교의 궤도시스템 변화에 따른 동적거동 분석)

  • Lee Hong-Joon;Choi Jung-Youl;Eom Mac;Park Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1171-1176
    • /
    • 2005
  • The latest technical development of steel plate girder railway bridge are developing in ways to maximize its durability of materials in use of high strength steel and efficiency of maintenance and management by the introduction of simplified and standardization ideas. In addition to this, it is also expected to reduce the cost of bridge construction and to simplify the process of bridge manufacturing. Referring to this, composite few plate girder railway bridge is highly recommendable that is very economical with the fine exterior. In this paper, it will analyse the variation of dynamic behavior of existing composite few plate girder railway bridge with ballast caused by modified Slab Track through interpretation of limited enzyme in order to obtain the existing data for improvement of Slab Track system from Ballast Track system. Consequently, it can help maximize economic efficiency and structural capability. As a results, although the natural frequency by modified Slab Track are decreased, it is hardly influencing on the safety of railway bridges. It is also evident in the case of slab deck with a reduced scale in comparison with Ballast Track. Therefore, it is expected to reduce the cost of a railway bridge plan. And, it can expect the synergistic effect of the ensure long term durability of bridge caused by decreased stresses of bottom flange due to reduced dead load. As a result, the analytical study are carried out to investigate the composite few plate girder railway bridge could be the optimal design method for the dynamic safety of a girder section.

  • PDF

A Study on Dynamic Behaviors of Steel Plate Girder bridge with Applying External Post-Tensioning Method (외부 후긴장 공법 적용에 따른 무도상 판형교의 동적거동 분석)

  • Choi, Dong-Ho;Choi, Jung-Youl;Choi, Jun-Hyeok;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.160-168
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of external post-tensioning method far steel plate girder bridge. It analyzed the mechanical behaviors of steel plate girder bridge with applying external post-tensioning on the finite element analysis, field test and laboratory test fur the lateral dynamic characteristics. As a result, the reinforcement of steel plate girder bridge the external post-tensioning method are obviously effective for the lateral dynamic response which is non-reinforced. The analytical and experimental study are carried out to investigate the post-tension force decrease lateral acceleration and deflection on steel plate girder bridge for serviceability. And the external post-tensioning method reduce dynamic maximum displacement(about $10{\sim}24%$), the increase of dynamic safety is predicted by adopting external post-tensioning method. From the dynamic test results of the servicing steel plate girder bridge, it is investigated that the change degree of natural frequency is very low with applying the external post-tensioning method The servicing steel plate girder bridge with external post-tensioning has need of the reasonable reinforcement measures which could be reducing the effect of lateral dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

Dynamic Behavior of Plate Girder Railway Bridges using the Finite Element Code (유한요소프로그램을 이용한 철도판형교의 동적거동)

  • Oh Ji-Taek;Song Jae-Pil;Kim Ki-Bong;Kim Hyun-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.228-234
    • /
    • 2005
  • Investigation on the dynamic behavior of railway bridges has not performed widely to date except high-speed railway bridges. In this study, 3-dimensional model is used for the finite element analysis of plate girder railway bridges. Train loads obtained through statistical approach of the measured true train loads are used. Numerical analysis is carried out about a 18m-span bridge. This result is compared with that of the experimental test of existing plate gilder railway bridge without ballast. The good agreement was obtained through the comparison. Judging from the analysis, resonant speed of diesel locomotive train is about 120km/h. However, the resonance for the other train is not found from the analysis.

Stress Histogram Analysis of Steel Plate Girder Railway Bridge due to Service Load Histories (실동하중에 의한 강판형철도교의 응력빈도해석)

  • Hwang, In-Gu;Kim, Yeon-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.928-933
    • /
    • 2004
  • Despite the number of steel bridges being under in service more than 50 years reaches about 50$\%$ in present, the quantitative estimation in maintenance on steel railway bridges is not possible because a ton of the field data in the bridges have not been plentifully accumulated. Therefore, a series of field tests on the steel plate girder bridge, the typical types of steel railway bridges, are executed, and the stress characteristics of main members in steel plate girder railway bridges are quantitatively estimated in this study.

  • PDF