• Title/Summary/Keyword: range of crossing accident

Search Result 5, Processing Time 0.022 seconds

The Setting in the Range of Traffic Accident on the Crosswalk (횡단보도의 교통사고 범위 설정에 관한 연구)

  • Kim, Jang-Wook;Jung, Min-Young;Kang, Dong-Soo;Hong, Ji-Yeon;Lee, Soo-Beom
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.120-126
    • /
    • 2011
  • Under the current law or system, the range of traffic accident on the crosswalk does not reflect the characteristics of traffic accident and the pedestrian's walking pattern. Thus, this study conducted a video recording survey on the 250 spots which are high to traffic accident rate of pedestrian-vehicle to reset the range of traffic accident on or near the crosswalk considering the characteristics of traffic accident and the pedestrian's walking pattern. Based on the collected data through a video recording survey, this study analyzed the pattern of pedestrians and extracted the variables influenced in the pedestrian's walking pattern. After conducting the regression analysis, this study made the model of measuring the range of traffic accident on the crosswalk. Through all processes these, this study reset the range of traffic accident on the crosswalk which could minimize the disadvantages of pedestrian when they have an accident on the crosswalk and ensure the right of way of pedestrian.

A Study on the Warning Characteristics of LDWS using Driver's Reaction Time and Vehicle Type (차량 종류 및 운전자 인지반응 시간을 이용한 LDWS 경고 특성에 관한 연구)

  • Park, Hwanseo;Chang, Kyungjin;Yoo, Songmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2016
  • More than 80 percent of traffic accidents related with lane departure believed to be the result of crossing the lane due to either negligence or drowsiness of the driver. Lane-departure related accident in the highway usually involve high fatality. Even though LDWS is believed to prevent accident 25% and reduce fatalities by 15% respectively, its effectiveness in performance is yet to be confirmed in many aspects. In this study, the vehicle lateral locations relative to warning zone envelop (earliest and latest warning zone) defined in ISO standard, ECE and NHTSA regulations are compared with respect to various factors including delays, vehicle speed and vehicle heading angle with respect to the lane. Since LDWS is designed to be activated at the speed over 60 km/h, vehicle speed range for the study is set to be from 60 to 100 km/h. The vehicle heading angle (yaw angle) is set to be up to 5 degree away from the lane (abrupt lane change) considering standard for lane change test using double lane-change test specification. The TLC is calculated using factors like vehicle speed, yaw angle and reaction time. In addition, the effect of vehicle type and reaction time have been considered to assess LDWS safety.

A Study on the Development of Basic Model for Marine Traffic Assessment Considering the Encounter Type Between Vessels (선박조우 형태를 고려한 해상교통환경평가 기초 모형 개발)

  • Kim, Jong-Sung;Park, Young-Soo;Heo, Tae-Young;Jeong, Jae-Yong;Park, Jin-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • Korea coastal area is highly potential dangerous zone of marine accident due to frequent ship's encounters. VTS center can't identify ship's information because of beyond VHF range. It is also difficult of us to efficiently manage vessel traffic beyond VTS control area, so that it can't prevent marine accident. Presently, korean government is conducting maritime traffic safety assessment according to enlargement of harbor & development of new port but do not have the system which provide danger of information depending on maritime traffic environment with real time. So it is necessary to develop evaluation index which can assess sea risk through the evaluation of maritime traffic environment. In this paper, on the basis of vessel navigator's risk consciousness, we carried out survey & statistical analysis vessel navigator's subjective risk depending on the LOA, crossing situation($045^{\circ}$, $090^{\circ}$, $135^{\circ}$), overtaking, head-on situation, encountering vessel's side, within or outside harbor, speed with other vessel(ex. same, fast or slow), speed difference with other vessel and distance with other vessel & propose basic expression to develop maritime traffic safety evaluation model. And by using this model, we can confirm that this proposing expression is suitable for domestic maritime traffic environment.

A Study on E-sensitized Systems for Pedestrian Crosswalk Safety (횡단보도 보행자 안전을 위한 전자감응시스템)

  • Lee, Jong-Won;Park, Sung-Won;Moon, Geon-Hee;Jung, Hoe-kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.564-566
    • /
    • 2015
  • Red traffic light indicates a different meaning, the green one. Motorists and pedestrians in the crosswalk must stop or move in accordance with a signal light. However, the probability of an accident is high if you do not see or ignore these signals. In addition to the curved pedestrian crossing installed the announcement system using an infrared sensor is difficult. In this paper, we design and implement methods of detecting pedestrians using the camera. A camera installed on the pontoon walking up the pedestrian and the pedestrian detection range is set through the image. With the proposed system it is effective in detecting pedestrians in the crosswalk curved.

  • PDF

LDWS Performance Study Based on the Vehicle Type (차량종류에 따른 LDWS 성능에 관한 연구)

  • Park, Hwan-Seo;Lee, Hong-Guk;Chang, Kyung-Jin;Yoo, Song-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.39-45
    • /
    • 2012
  • More than 80 percent of traffic accidents related with lane departure believed to be the result of crossing the lane due to either negligence or drowsiness of the driver. Lane-departure related accident in the highway usually involve high fatality. Even though LDWS is believed to prevent accident 25% and reduce fatalities by 15% respectively, its effectiveness in performance is yet to be confirmed in many aspects. In this study, the vehicle lateral locations relative to warning zone envelop (earliest and latest warning zone) defined in ISO standard, ECE and NHTSA regulations are compared with respect to various factors including delays, vehicle speed and vehicle heading angle with respect to the lane. Since LDWS is designed to be activated at the speed over 60 km/h, vehicle speed range for the study is set to be from 60 to 100 km/h. The vehicle heading angle (yaw angle) is set to be up to 5 degree away from the lane (abrupt lane change) considering standard for lane change test using double lane-change test specification. The TLC is calculated using factors like vehicle speed, yaw angle and reaction time. In addition, the effect of vehicle type has been considered to assess LDWS safety.