• Title/Summary/Keyword: rapid measurements

Search Result 436, Processing Time 0.025 seconds

Mechanical, durability and microstructure properties of concrete containing natural zeolite

  • Nas, Memduh;Kurbetci, Sirin
    • Computers and Concrete
    • /
    • v.22 no.5
    • /
    • pp.449-459
    • /
    • 2018
  • Concrete is one of the most widely used construction materials in the world. Producing economical and durable concrete is possible by employing pozzolanic materials. The aim of this study is to underline the possibility of the utilization of natural zeolite in producing concrete and investigate its effects basically on the strength and durability of concrete. In the production of concrete mixes, Portland cement was replaced by the natural zeolite at ratios of 0%, 10%, 15%, and 20% by weight. Concretes were produced with total binder contents of $300kg/m^3$ and $400kg/m^3$, but with a constant water to cement ratio of 0.60. In addition to compressive and flexural strength measurements, freeze-thaw and high temperature resistance measurements, rapid chloride permeability, and capillary water absorption tests were performed on the concrete mixes. Compared to the rest mixes, concrete mixes containing 10% zeolite yielded in with the highest compressive and flexural strengths. The rapid chloride permeability and the capillary measurements were decreased as the natural zeolite replacement was increased. Freeze-thaw resistance also improved significantly as the replacement ratio of zeolite was increased. Under the effect of elevated temperature, natural zeolite incorporated concretes with lower binder content yielded higher compressive strength. However, the compressive strengths of concretes with higher binder content after elevated temperature effect were found to be lower than the reference concrete.

Influence of slice thickness of computed tomography and type of rapid protyping on the accuracy of 3-dimensional medical model (CT절편두께와 RP방식이 3차원 의학모델 정확도에 미치는 영향에 대한 연구)

  • Um Ki-Doo;Lee Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.34 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • Purpose : This study was to evaluate the influence of slice thickness of computed tomography (CT) and rapid protyping (RP) type on the accuracy of 3-dimensional medical model. Materials and Methods: Transaxial CT data of human dry skull were taken from multi-detector spiral CT. Slice thickness were 1, 2, 3 and 4 mm respectively. Three-dimensional image model reconstruction using 3-D visualization medical software (V-works /sup TM/ 3.0) and RP model fabrications were followed. 2-RP models were 3D printing (Z402, Z Corp., Burlington, USA) and Stereolithographic Apparatus model. Linear measurements of anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared according to slice thickness and RP model type. Results: There were relative error percentage in absolute value of 0.97, 1.98,3.83 between linear measurements of dry skull and image models of 1, 2, 3 mm slice thickness respectively. There was relative error percentage in absolute value of 0.79 between linear measurements of dry skull and SLA model. There was relative error difference in absolute value of 2.52 between linear measurements of dry skull and 3D printing model. Conclusion: These results indicated that 3-dimensional image model of thin slice thickness and stereolithographic RP model showed relative high accuracy.

  • PDF

Long-term stability of maxillary and mandibular arch dimensions when using rapid palatal expansion and edgewise mechanotherapy in growing patients

  • Kim, Ki Beom;Doyle, Renee E.;Araujo, Eustaquio A.;Behrents, Rolf G.;Oliver, Donald R.;Thiesen, Guilherme
    • The korean journal of orthodontics
    • /
    • v.49 no.2
    • /
    • pp.89-96
    • /
    • 2019
  • Objective: The purpose of this study was to assess the long-term stability of rapid palatal expansion (RPE) followed by full fixed edgewise appliances. Methods: This study included 67 patients treated using Haas-type RPE and non-extraction edgewise appliance therapy at a single orthodontic practice. Serial dental casts were obtained at three different time points: pretreatment ($T_1$), after expansion and fixed appliance therapy ($T_2$), and at long-term recall ($T_3$). The mean duration of the $T_1-T_2$ and $T_2-T_3$ periods was $4.8{\pm}3.5years$ and $11.0{\pm}5.4years$, respectively. The dental casts were digitized, and the computed measurements were compared with untreated reference data. Results: The majority of treatment-related increases in the maxillary and mandibular arch measurements were statistically significant (p < 0.05) and greater than expected for the untreated controls. Although many measurements decreased postretention ($T_2-T_3$), the net gains persisted for all of the measurements evaluated. Conclusions: The use of RPE therapy followed by full fixed edgewise appliances is an effective method for increasing maxillary and mandibular arch width dimensions in growing patients.

Comparison Studies on GaAS Ohmic Contacts Fabricated by Rapid and Conventional Alloying Process and New Analysis Method of TLM Patterns (Rapid와 conventional Alloying 공정에 의한 GaAs Ohmic Contact의 특성 비교연구와 TLM의 새로운 해석 방법의 제안)

  • Rhee, Jin-Koo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1663-1668
    • /
    • 1988
  • Ohmic contact process for the fabrication of GaAs integrated circuits is very important. Specific contact resistivities, assuming Rsm=Rs, were measured after the rapid and the conventional alloying process, respectively. The results show that the characteristics of ohmic contact through the rapid alloying process is much better (Apc=1.3~3.3x10**-7 \ulcorner-(m\ulcorner. This is probably due to intensive and compound energy densities during the rapid alloying process. New analysis method of TLM patterns viz. measurements of normlaized specific contact resistivities are proposed to reduce measurement errors that could occur when measuring the small contact end resistances. The adoption of rapid alloying process for the mass production of GaAs integrated circuits could greatly reduce the total processig time.

  • PDF

Particle Image Velocimetry Measurements in Nasal Airflow (코 내부 유동의 PIV 해석)

  • Kim, Sung-Kyun;Son, Young-Rak
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.566-569
    • /
    • 2001
  • Researchers have invectigated nasal flow both numerically and experimentally for centuries. Experimental studies most have suffered from various limitations necessary to allow the measurements to be obtained with available equipment. Nasal airflow can be subdivided into two interrelated categories; nasal airflow resistance and heat and mass transfer between the air stream and the walls of the nasal cavity. In this study, thanks to a new method for model casting by a combination of Rapid prototyping and Solidification of clear silicone, a transparent rectangular box containing the complex nasal cavity is made for PIV experiments. The CBC PIV algorithm is used for analysis.

  • PDF

Annealing Effects on $Zn_{0.9}Cd_{0.1}$/Se/ZnSe Strained Single Quantum Well (Zn_{0.9}Cd_{0.1}/ZnSe 변형된 단일 양자우물구조의 열처리 효과)

  • 김동렬;배인호;손정식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.467-471
    • /
    • 2000
  • The thermal annealing effect of $Zn_{0.9}Cd_{0.1}$ single quantum-well structures grown by molecular beam epitaxy is investigated. As the results of before and after rapid thermal annealed samples a red shift of E1-HH1 peak by Cd interdiffusion during thermal annealing of ZnCeSe/ZnSe sample was observed. In the case of annealed sample over $450^{\circ}C$ donor and acceptor impurities related peaks were observed which seems to be due to a diffusion of Ga and As from GaAs substrate. And also interdiffusion phenomena is idenified by the results of DCX measurements and which are consisten with the PL measurements.

  • PDF

Changes in mandibular transversal arch dimensions after rapid maxillary expansion procedure assessed through cone-beam computed tomography (급속 구개확장 후 하악골 폭경변화에 대한 콘빔씨티를 이용한 평가)

  • Baysal, Asli;Veli, Ilknur;Ucar, Faruk Izzet;Eruz, Murat;Ozer, Torun;Uysal, Tancan
    • The korean journal of orthodontics
    • /
    • v.41 no.3
    • /
    • pp.200-210
    • /
    • 2011
  • Objective: This study aimed at evaluating the changes in mandibular arch widths and buccolingual inclinations of mandibular posterior teeth after rapid maxillary expansion (RME). Methods: Baseline and post-expansion cone-beam computed tomographic (CBCT) images of patients who initially had bilateral posterior cross-bite and underwent RME with a banded-type expander were assessed in this study. The patients included 9 boys (mean age: $13.97{\pm}1.17$ years) and 11 girls (mean age: $13.53{\pm}2.12$ years). Images obtained 6 months after retention were available for 10 of these patients. Eighteen angular and 43 linear measurements were performed for the maxilla and mandible. The measurements were performed on frontally clipped images at the following time points; before expansion (T1), after expansion (T2), and after retention (T3). Statistical significance was assessed with paired sample $t$-test at $p$ < 0.05. Results: T1-T2 comparisons showed statistically significant post-RME increases for all measurements; similarly, T2-T1 and T3-T1 comparisons showed statistically significant changes. The maxillary linear and angular measurements showed decreases after expansion, and mandibular linear and angular measurements increased after retention. Conclusion: All mandibular arch widths increased and mandibular posterior teeth were uprighted after RME procedure.

Stability of dental, alveolar, and skeletal changes after miniscrew-assisted rapid palatal expansion

  • Lim, Hyun-Mook;Park, Young-Chel;Lee, Kee-Joon;Kim, Kyung-Ho;Choi, Yoon Jeong
    • The korean journal of orthodontics
    • /
    • v.47 no.5
    • /
    • pp.313-322
    • /
    • 2017
  • Objective: Miniscrew-assisted rapid palatal expansion (MARPE) is a means for expanding the basal bone without surgical intervention in young adults. Here, we assessed the differences in dental, alveolar, and skeletal measurements taken before (T0), immediately after (T1), and 1 year after (T2) MARPE. Methods: Twenty-four patients (mean age, 21.6 years) who had undergone MARPE and cone-beam computed tomography at T0, T1, and T2 were included. Changes in the following parameters were compared using paired t-tests: intercusp, interapex, alveolar, nasal floor, and nasal cavity widths; inclination of the first molar (M1) and its alveolus; and thickness and height of the alveolar bone. A linear mixed-effects model was used to determine variables that affected periodontal changes in the M1. Results: MARPE produced significant increases in most measurements during T0-T2, despite relapse of some measurements during T1-T2. The alveolar thickness decreased on the buccal side, but increased on the palatal side. The alveolar crest level at the first premolar moved apically. Changes in the thickness and height of the alveolar bone were affected by the corresponding initial values. Conclusions: MARPE can be used as an effective tool for correcting maxillomandibular transverse discrepancy, showing stable outcomes 1 year after expansion.

Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique

  • Kim, Jae-Hong;Kim, Ki-Baek;Kim, Woong-Chul;Kim, Ji-Hwan;Kim, Hae-Young
    • The korean journal of orthodontics
    • /
    • v.44 no.2
    • /
    • pp.69-76
    • /
    • 2014
  • Objective: This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Methods: Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of interexaminer and inter-method variability. Results: The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. Conclusions: The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models.

Experimental validation of smartphones for measuring human-induced loads

  • Chen, Jun;Tan, Huan;Pan, Ziye
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.625-642
    • /
    • 2016
  • The rapid technology developments in smartphones have created a significant opportunity for their use in structural live load measurements. This paper presents extensive experiments conducted in two stages to investigate this opportunity. Shaking table tests were carried out in the first stage using selected popular smartphones to measure the sinusoidal waves of various frequencies, the sinusoidal sweeping, and earthquake waves. Comparison between smartphone measurements and real inputs showed that the smartphones used in this study gave reliable measurements for harmonic waves in both time and frequency domains. For complex waves, smartphone measurements should be used with caution. In the second stage, three-dimensional motion capture technology was employed to explore the capacity of smartphones for measuring the movement of individuals in walking, bouncing and jumping activities. In these tests, reflective markers were attached to the test subject. The markers' trajectories were recorded by the motion capture system and were taken as references. The smartphone measurements agreed well with the references when the phone was properly fixed. Encouraged by these experimental validation results, smartphones were attached to moving participants of this study. The phones measured the acceleration near the center-of-mass of his or her body. The human-induced loads were then reconstructed by the acceleration measurements in conjunction with a biomechanical model. Satisfactory agreement between the reconstructed forces and that measured by a force plate was observed in several instances, clearly demonstrating the capability of smartphones to accurately assist in obtaining human-induced load measurements.