• Title/Summary/Keyword: rapid prototyping

Search Result 560, Processing Time 0.235 seconds

Concurrent Engineering Approach to the Die Design of Metal Forming Process using Rapid Prototyping and Finite Element Analysis (쾌속 3차원 조형법과 유한요소해석을 연계한 소성가공 금형설계의 동시공학적 접근방법)

  • Part, K.;Yoon, J.W.;Cho, J.R.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.146-154
    • /
    • 1996
  • In this work, rapid prototyping and three-dimensional finite element analysis are simultaneously applied to the die design of metal forming processes. Rapid prototyping is a new prototyping technology which produces three-dimensional part models directly from CAD data and has been extensively applied to various manufacturing processes. There are many types of rapid prototyping systems due to their building principles and materials. In this work, Stereolithography Apparatus(SLA), which is the most widely used rapidprototyping system, is introduced to manufacture the die set. For general preparation of STL file, which is the standard input file of rapid prototyping system, mesh data which are used in describing the die surface in finite element analysis are translated so that rapid prototyping and finite element analysis are dffectively connected. A die set for spider forging and a clover punch for deep drawing section are manufactured effciently using SLA prototypes, and metal forming experiments are carried out using them. Comparing the result of experiments with that of analyses, the processes can be predicted and designed successfully.

  • PDF

Imfluence of Surface roughness on Rapid prototyping by FDM (FDM 장치에서 쾌속조형물의 형상이 표면 거칠기에 미치는 영향)

  • 전재억;정진서;하만경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.1037-1041
    • /
    • 2001
  • Competitive power is rapidly manufacture product required consumers. Therefore, modern industry have changed from small item many production to many item small production, rapid production is necessary thing at the product development. Thus, rapid prototyping is appeared. If the graphic model was made by CAD, the production can be made in short term. That provide what the part was directly tested by the worker. It provide believable data. This study is Imfluence of Surface roughness on Rapid prototyping by FDM(Fused deposition modeling).

  • PDF

Research of Application of Rapid Prototyping in Architectural Industry and Its Educational Status - With Focus on the Mid-size Firm and Graduate CAAD Education in U.S- (건축 산업에서의 신속조형기술 응용과 교육 연구 -미국의 중소규모 사무소와 대학원 CAAD 교육을 중심으로-)

  • Jung, C. H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.77-91
    • /
    • 2004
  • Integrating computer-aided design with computer-aided fabrication and construction will fundamentally redefine the relationship between design and construction. Rapid prototyping(RP) is evaluated as one of the integration method available but it has been regarded as very expensive and complex design evaluation tool and is only suitable for large mechanical design shops in automobile and aerospace industry. However current status of rapid prototyping is changing since the new generation of RP equipment, less expensive and more user-friendlier, now can be installed and use in design firms. Simultaneously increasing use of 3D CAAD software is also helping to use rapid prototyping widely. It is crucial to acknowledge rapid prototyping technologies are not only for avant-garde architect such as Frank O. Gehry but ordinary 90% architects, who can have benefit from fast and cost-effective technology. With its fast development and adaptation in architectural industry, it is quite necessary to include rapid prototyping education in regular CAAD courses either undergraduate or graduate level.

쾌속 3차원 조형법과 유한요수해석을 연계한 소성가공 금형설계의 동시공학적 접근방법

  • Park, Geun;Yoon, Jung-Hwan;Yang, Dong-Ryul;Cho, Jong-Rae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.884-889
    • /
    • 1994
  • In this work, rapid prototyping and three dimensional finite element analysis are simltaneously applied to design metal forming processes. Rapid prototyping is a new prototyping technology which producess three dimensional part models directly from CAD data and has been extensively applied to various manufacturing processes. There are many types of rapid prototyping systems due to their building principles and materials. In this work, Stereolithography Apparatus (SLA) which is the most widely-used rapid prototyping system is introduced to manufacture the die set. To prepare STL file generally, mesh data which are in describing the die surface in finite element analysis are translated so that rapid prototyping and finite element analysis are effectively connected. The die sets are manufactured using SLA prototypes, and matal forming experiments are carried out using them. Comparing experiments results with analyses, the processes can be predicted and designed successfully.

  • PDF

Rapid Product Fabrication using Wire Welding with CO2 Laser Irradiation and Milling Process Technology (레이저 용접공정과 밀링공정에 의한 쾌속 금속 시작품)

  • Choi, Du-Seon;Lee, Su-Hong;Sin, Bo-Seong;Yun, Gyeong-Gu;Hwang, Gyeong-Hyeon;Park, Jin-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.104-110
    • /
    • 2001
  • The rapid prototyping and tooling technology has been developed. However, most commercial ones currently use resins or waxes as the raw materials. These days, the direct metal deposition methods are being investigated as new rapid prototyping and tooling technology. A fundamental study on rapid prototyping and tooling with wire welding technology using CO2 laser radiation was carried out in this paper. The main focus is to develop a simple commercial rapid prototyping and tooling system with the exiting laser welding technology as output and their microstructure, hardness and tensile strength are examined for the reliability. In addition, its advantages and disadvantages are discussed as a rapid prototyping and tooling system.

  • PDF

Rapid Product Fabrication using Wire Welding with $CO_2$ Laser Irradiation and Milling Process Technology (레이저 용접공정과 밀링공정에 의한 쾌속 금속 시작품 제작)

  • 최두선;신보성;윤경구;황경현;박진용;이종현;송용억;박세형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.763-766
    • /
    • 2000
  • The Rapid Prototyping and Tooling technology has been developed. However, most commercial ones currently use resins or waxes as the raw materials. These days. the direct metal deposition methods are researched as a true rapid prototyping and tooling technology. A fundamental study on rapid prototyping and tooling with wire welding technology using $CO_2$ laser radiation was carried out in this paper. The main focus is to develop a simple commercial rapid prototyping and tooling system with the exiting laser welding technology. The process is investigated as a function of laser parameters and process variables. Basic parts were fabricated as out-put and their microstructure, hardness and tensile strength are examined for the reliability. In addition, Its advantages and disadvantages are discussed as a rapid prototyping and tooling system.

  • PDF

A study on the development of rapid prototyping system using 5 axis machining (5축 가공을 이용한 쾌속조형 시스템의 개발)

  • 정태성;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.1011-1014
    • /
    • 2002
  • In order to reduce the lead-time and cost, many useful methods have been applied to Rapid Prototyping (RP) in recent years. But cutting process is still considered as one of the effective RP methods that have been developed and currently available in the industry. It also owen practical advantages such as precision and versatility. However, traditional 3 axis NC machining has some inherent limitations such as the restriction of tool accessibility and the complex setup. In this work, a new rapid prototyping system with high speed 5 axis machining has been developed to overcome those limitations. The architecture of developed system is described in detail and the successful application examples are presented.

  • PDF