• Title/Summary/Keyword: rare earth

Search Result 971, Processing Time 0.032 seconds

Effects of Antibiotics, Zinc Oxide or a Rare Earth Mineral-Yeast Product on Performance, Nutrient Digestibility and Serum Parameters in Weanling Pigs

  • Han, Yung-Keun;Thacker, Philip A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.1057-1065
    • /
    • 2010
  • Two experiments were conducted to compare the effects of feeding a newly-developed rare earth mineral-yeast product, zinc oxide (ZnO) or antibiotics on the performance, nutrient digestibility and serum parameters of weanling pigs. In experiment 1, 150 crossbred barrows (24 d old and 6.28 kg BW) were fed one of five dietary treatments consisting of an unsupplemented basal diet or the basal diet supplemented with antibiotics (33 ppm tiamulin and 100 ppm chlortetracycline), ZnO (1,500 or 2,500 ppm) or 0.1% peptide-bound rare earth mineral-yeast. In experiment 2, 576 crossbred barrows (28 d old and 7.20 kg BW) were fed the same diets as those used in experiment 1 modified only by the addition of 1.0% Celite 545 to all diets as a digestibility marker. However, the negative control was not included. In experiment 1, weight gain was significantly lower (p<0.05) for pigs fed the negative control than for pigs fed diets supplemented with antibiotics, ZnO, or rare earth mineral-yeast. Pig performance did not differ between pigs fed the four supplemented diets. In experiment 2, there were no differences in performance between pigs fed diets supplemented with antibiotic, ZnO or rare earth mineral-yeast. The digestibility of dry matter, crude protein, calcium, phosphorus and energy were significantly (p<0.01) higher on the rare earth mineral-yeast diet than on diets supplemented with ZnO. In addition, pigs fed the diet supplemented with rare earth mineral-yeast had significantly (p<0.05) higher digestibility of histidine, lysine, threonine and valine than pigs fed the ZnO supplemented diets. Digestibility coefficients for pigs fed antibiotics tended to be intermediate to those of pigs fed rare earth mineralyeast or ZnO. In conclusion, the performance of pigs fed rare earth mineral-yeast was basically equal to that of pigs fed antibiotics or ZnO indicating that rare earth mineral-yeast can be successfully used as a growth promoter in diets fed to nursery pigs. The effects of rare earth mineral-yeast appeared to be mediated through improvements in nutrient digestibility.

Changes in China's Rare Earth Industry Policy and their Implications (중국 희토류산업정책의 변화와 정책적 함의)

  • PARK, In-Sop;SONG, Jae-Do
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.71
    • /
    • pp.297-324
    • /
    • 2016
  • China not only has the largest amount of rare earth reserves, but it also produces the most rare earth products. However, China lacks appropriate supervision and management systems of its rare earth industry. The Chinese government's inappropriate mechanisms have been cause for reckless development by national rare earth providers characterized by excessive competition, environmental pollution, and smuggling. In response to the problems, China implemented regulatory measures to restructure the rare earth industry. The Chinese central government intensifies its efforts to control the total quantity of rare earth products and tackle environmental pollution. Six leading conglomerates have been selected to promote the Chinese central government's policy. A new environmental guideline has been drawn up to reduce the discharging of wastewater and air pollution substance. Huge transition and a great influence of its policy changes are expected. These policy changes are bound to entail huge transitions, and the policy is expected to have a great influence in the future structure of the rare earth industry. In consideration of these changes, the Korean government, in collaboration with private enterprises needs to take appropriate measures, such as overseas resources development, R&D expansion, tactical stockpiling, professional manpower training and so on.

  • PDF

Extractive Metallurgy and Separation Technology of Rare Earth Ores (교토류광석(橋土類鑛石)의 제련(製鍊) 및 분리(分離) 기술(技術))

  • Lee, Man-Seung;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.27-35
    • /
    • 2010
  • Rare earth alloys and compounds are the raw materials for the manufacture of advanced materials. Although domestic monazite ores have been found, there are some difficulties in recovering rare earth from these ores. Rare earth ores are found in few countries and these countries put an embargo on the export of rare earth ores for the protection of their industry. We gathered some information on the hydrometallurgical and pyrometallurgical processes to recover rare earths from bastnasite, monazite, and xenotime which consist of 95% of the total rare earth ores. Since rare earth with the purity more than 6N is needed for use in advanced materials, some separation methods such as fractional crystallization, precipitation, ion exchange, and solvent extraction were introduced.

Overview on the Technologies for Extraction of Rare Earth Metals (희토류금속(稀土類金屬) 제련기술(製鍊技術) 개요)

  • Park, Hyung-Kyu;Lee, Jin-Young;Cho, Sung-Wook;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.74-83
    • /
    • 2012
  • Rare earth metals have been made from rare earth compounds which were prepared from rare earth ore concentrates through successive processes such as leaching(i.e. extraction of rare earth elements to liquid media), separation, purification, precipitation. Here, process for treating monazite and bastnasite ore concentrates were briefly reviewed, and metallothermic reduction and fused salt electrolysis methods were introduced as the extraction technologies for rare earth metals.

Study on the Ion Exchange Mechanisms of Rare Earth Elements in Several Elution Types (II) (희토류원소의 여러 가지 용리형태의 이온교환 메카니즘에 관한 연구 (II))

  • Ki-Won Cha;Sung Wook Hong
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.553-559
    • /
    • 1991
  • The elution characteristics of rare earth elements in $NH^{4+}$ form cation exchange resin had been investigated. Elution were performed varing the loading amount, column diameter, column length and eluent pH. Analysing the chemical species contained in each effluent, elution mechanisms of rare earth elements and the separation of rare earth elements in monazite could be understood. The resolution values of adjacent rare earth elements were improved increasing rare earths adsorption amount wfith the same column within it's exchange capacity. With $NH^{4+}$ resin form, column length does not affect on the resolution values and retention time of rare earth elements and the rare earth-EDTA complex were not adsorbed on $NH^{4+}$ resin form. pH of eluent affected on the reactivities between rare earth elements and EDTA. Decreasing eluent pH, resolution values of adjacent rare earth elements were increased while increasing elution time.

  • PDF

Recovery of Rare Earth Metal from Used Automotive Three-Way Catalyst (자동차용 폐 삼원촉매로부터의 희귀금속 회수공정 기술 동향)

  • Hong, Yeon Ki
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • The car industry is one of the technological applications which more rare earth metals employes as three-way catalysts. Therefore, the recovery of rare earth metals from the used automotive three-way catalysts could be important source to obtain these metals. This work presents the analysis of market and demand for rare earth metal in automotive three-way catalyst and introduces the dry and the wet processes for the recovery of rare earth metals from used three-way catalyst. Finally, the alternative methods to conventional wet processes was simply suggested based on the economic and ecological point of view.

  • PDF

Standardization Status of Rare Earth Elements Recycling in ISO TC 298 (ISO TC 298에서의 희토류 재활용 관련 국제 표준화 현황)

  • Lee, Mi Hye;Song, Yosep;On, Ji Sun;Yoon, Seung Hwan;Han, Munhwan;Kim, Bum Sung;Kim, Taek-soo;Lee, Bin
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.159-165
    • /
    • 2022
  • Rare earth elements, which are important components of motors, are in high demand and thus constantly get more expensive. This tendency is driven by the growth of the electric vehicle market, as well as environmental issues associated with rare-earth metal manufacturing. TC 298 of the ISO manages standardization in the areas of rare-earth recycling, measurement, and sustainability. Korea, a resource-poor country, is working on international standardization projects that focus on recycling and encouraging the domestic adoption of international standards. ITU-T has previously issued recommendations regarding the recycling of rare-earth metals from e-waste. ISO TC 298 expands on the previous recommendations and standards for promoting the recycling industry. Recycling-related rare earth standards and drafts covered by ISO TC 298, as well as Korea's strategies, are reviewed and discussed in this article.

A Study on the Preparation of Rare Earth Oxide Powder for Rare Earth Precipitates Recovered from Spent Ni-MH Batteries (폐니켈수소전지로부터 회수된 희토류 침전물의 희토류 산화물 분말 제조에 대한 연구)

  • Kim, Dae-Weon;Ahn, Nak-Kyoon;Shim, Hyun-Woo;Park, Kyung-Soo;Choi, Hee-Lack
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.213-219
    • /
    • 2018
  • We report a method for preparing rare earth oxides ($Re_xO_y$) from the recycling process for spent Ni-metal hydride (Ni-MH) batteries. This process first involves a leaching of spent Ni-MH powders with sulfuric acid at $90^{\circ}C$, resulting in rare earth precipitates (i.e., $NaRE(SO_4)_2{\cdot}H_2O$, RE = La, Ce, Nd), which are converted into rare earth oxides via two different approaches: i) simple heat treatment in air, and ii) metathesis reaction with NaOH at $70^{\circ}C$. Not only the morphological features but also the crystallographic structures of all products are systematically investigated using field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD); their thermal behaviors are also analyzed. In particular, XRD results show that some of the rare earth precipitates are converted into oxide form (such as $La_2O_3$, $Ce_2O_3$, and $Nd_2O_3$) with heat treatment at $1200^{\circ}C$; however, secondary peaks are also observed. On the other hand, rare earth oxides, RExOy can be successfully obtained after metathesis of rare earth precipitates, followed by heat treatment at $1000^{\circ}C$ in air, along with a change of crystallographic structures, i.e., $NaRE(SO_4)_2{\cdot}H_2O{\rightarrow}RE(OH)_3{\rightarrow}RE_xO_y$.

Separation and Recovery of Rare Earth Elements from Phosphor Sludge of Waste Fluorescent Lamp by Pneumatic Classification and Sulfuric Acidic Leaching

  • Takahashi, Touru;Takano, Aketomi;Saitoh, Takayuki;Nagano, Nobuhiro;Hirai, Shinji;Shimakage, Kazuyoshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.421-426
    • /
    • 2001
  • The pneumatic classification and acidic leaching behaviors of phosphor sludge have been examined to establish the recycling system of rare earth components contained in waste fluorescent lamp. At first, separation characteristic of rare earth components and calcium phosphate in phosphor sludge was investigated by pneumatic classification. After pneumatic classification of phosphor sludge, rare earth components were leached in various acidic solutions and sodium hydroxide solution. For recovery of soluble component in leaching solution, rare earth components were separated as hydroxide and oxalate precipitations. The experimental results obtained are summarized as follows: (1) In classification process, rare earth components in phosphor sludge were concentrated to 29.3% from 13.3%, and its yield was 32.9%. (2) In leaching process, sulfuric acid solution was more effective one as a leaching solvent of rare earth component than other solutions. Y and Eu components in phosphor sludge were dissolved in sulfuric acid solution of 1.5 k㏖/㎥, and other rare earth components were rarely dissolved in leaching solution. Leaching degrees of Y and Eu were respectively 92% and 98% in the following optimum leaching conditions; sulfuric acid concentration is 1.5 k㏖/㎥ , leaching temperature 343 K, leaching time 3.6 ks and pulp concentration 30 kg/㎥. (3) Y and Eu components of phosphor sludge contained in waste fluorescent lamp were, effectively recovered by three processes of pneumatic classification, sulfuric acid leaching and oxalate precipitation methods. Their recovery was finally about 65 %, and its purity was 98.2%.

  • PDF

A study on dehydration of rare earth chloride hydrate (염화 희토류 수화물의 탈수화에 관한 연구)

  • Lee, Tae-Kyo;Cho, Yong-Zun;Eun, Hee-Chul;Son, Sung-Mo;Kim, In-Tae;Hwang, Taek-Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.2
    • /
    • pp.125-132
    • /
    • 2012
  • The dehydration schemes of rare earth (La, Ce, Nd, Pr, Sm. Eu, Gd, Y) chloride hydrates was investigated by using a dehydration apparatus. To prevent the formation of the rare earth oxychlorides, the operation temperature was changed step by step ($80{\rightarrow}150{\rightarrow}230^{\circ}C$) based on the TGA (thermo-gravimetric analysis) results of the rare earth chloride hydrates. A vacuum pump and preheated Ar gas were used to effectively remove the evaporated moisture and maintain an inert condition in the dehydration apparatus. The dehydration temperature of the rare earth chloride hydrate was increased when the atomic number of the rare earth nuclide was increased. The content of the moisture in the rare earth chloride hydrate was decreased below 10% in the dehydration apparatus.