• Title/Summary/Keyword: raw material

Search Result 2,602, Processing Time 0.031 seconds

The Effect of Raw Material Supply on the Relationship Pattern and Franchise Re-Contract Intention in Food-Service Franchise Enterprises (외식 프랜차이즈 기업에서 원자재 공급이 관계 규범과 가맹점의 재계약 의도에 미치는 영향)

  • An, Chi-Eon;Hwang, Choon-Ki
    • Culinary science and hospitality research
    • /
    • v.11 no.4 s.27
    • /
    • pp.118-133
    • /
    • 2005
  • In the management activities of head office in supporting franchisees in domestic food-service enterprises, the raw material supply plays a positive role to support franchisees' operation activity and it comes into conflict with them at the same time. In this paper, I have tried to find out the relationship between raw material supplying and the satisfaction of the franchisees by experimental research in order to research the route of head office's raw material supplying. To sum up the results, it was found out there is no meaningful relationship between the raw material supplying and the franchisees satisfaction (intention to renew the agreement), It indicates it would be more effective for the franchisees to buy the raw materials from the suppliers developed by the franchisees except some key materials in order to reduce the conflicts with the franchisees.

  • PDF

A Study on Optimal Design of Polymer Extruder Dies by CFD (CFD를 이용한 고분자 압출기 Dies 최적설계에 관한 연구)

  • Kim, Jea-Yoel;Choi, Jin-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.585-589
    • /
    • 2009
  • Extruder is divided to greatly three part at extrusion process. First, by hopper(Hopper) second, barrel(Barrel) with Screw that is point of extruder and third that is raw material supply wealth extrusion into dies(DIES) Part that decide shape of do product greatly divide. Hopper is role that distribute in raw material supply wealth (Feeding zone) of Screw preserving raw material in state of high quality how at extrusion process, and make distributed raw material as Screw in barrel rotates and 3 stage and inflicting heat and pressure raw material melting(Melting) state. And raw material of melting state Screw's measuring stoker(Metering zone) whereabouts anaphora do and product is completed through pipe channel of dies. Dies that is the most important as Screw in extrusion is part that is last part of melting state process of raw material and causes huge effect in quality of product. If more than design of dies happens, manufacture itself of dies is hard, but there are a lot of amount of losses accordingly. In this research, make pipe channel that raw material of melting state flows in dies can present dies basic design method through flow analysis of ideal pipe channel using CFdesign.

  • PDF

Tension Strength and Expansion Property Analysis Research to Utillize Thermoplasticity Recycling Plastic to Single Play Waterproof System for Construction (열가소성 재활용수지를 건축용 단층방수시스템에 활용하기 위한 인장 및 신장 특성 분석 연구)

  • Park, Sung-Woo;Ko, Jin-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.89-94
    • /
    • 2011
  • In this research, among thermoplasticity plastic raw material that recycling is possible polyolefine(TPO) and polyvinyl chloride(PVC) as target recycling plan examine wish to. It is polyolefine(TPO) and polyvinyl chloride(PVC)) is mediocrity material that there are a lot of amount useds among plastic material and it is material that recycling is also activated most. Long term made first new regulation raw material, by-product raw material happened at process of production at second factory and third time to examine recycling plan of this material divides this as raw material that pass through process separation and pelet Tuesday and analyzed each special quality removing each removed waste after is used. Measure tension strength and ext. heightening gradually mixing proportion of refreshing resources on standard Sample manufactured as new raw material and application examined possibility availability to single fly system.

  • PDF

Influence of Notch Change on Corrosion Fatigue Fracture in F.E.M. Dual phase Steel of SS41 Steel (SS41강의 F.E.M.복합조직강에서 노치변화가 부식피로파괴에 미치는 영향)

  • 도영민;이규천
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.44-50
    • /
    • 2001
  • The rotated bending fatigue test was conducted in air md in 3.5% NaCl salt solution to investigate the fatigue fracture behaviour of raw material and F.E.M dual phase steel made from raw material(SS41) by a suitable heat treatment. This study has compared the initial microcrack creation of material by tensile test with that by fatigue test. And the rotated bending test of cantilever type under the condition of 3.5% NaCl salt solution and air has investigated the corrosion fatigue fracture behaviour with the variation of stress concentration factor determined by each of notch shapes. The initial microcrack have been developed in fragile grainboundary with general corrosion occurring in raw material : in the pits built up by corrosion in F.E.M. dual phase steel because pits bring out stress concentration. It is small that the degree of decrease in corrosion fatigue life for F.E.M. dual phase steel compared with raw material because the notch sensitivity of F.E.M. dual phase steel is lower than raw material in reason of characteristics with two-phase construction.

  • PDF

Manufacture of Ultra Fine CuO Powder from Waste Copper Chloride Solution by Spray Pyrolysis Process

  • Yu, Jae-Keun;Ahn, Zou-Sam;Sohn, Jin-Gun
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.165-170
    • /
    • 2001
  • The main purpose of this study is to generate a fine copper oxide powder of high purity, with a compact structure and a uniform particle size by a spray pyrolysis process. The raw material is a waste copper chloride solution formed in the manufacturing process of Print Circuit Board (PCB). This study also examines the influences of various factors on the properties of the generated powder. These factors include the reaction temperature, the inflow speed of the raw material solution, the inflow speed of the air, the size of the nozzle tip, and the concentration of the raw material solution. It is discovered that, as the reaction temperature increases from 80$0^{\circ}C$ to 100$0^{\circ}C$ , the particle size of the generated powder increases accordingly, and that the structure of the powder becomes much more compact. When the reaction temperature is 100$0^{\circ}C$, the particle size of the generated powder increases as the concentration of copper in the raw material solution increases to 40g/l, decreases as the concentration increases up to 120g/l, and increases again as the concentration reaches 200g/1. In the case of a lower concentration of the raw material solution, the generated powder appears largely in the form of CuO. As the concentration increases, however, the powder appears largely in the form of CuCl. When the concentration of copper in the raw material solution is 120g/1, the particle size of the generated powder increases as the inflow speed of the raw material solution increases. When the concentration of copper in the raw material solution is 120g/1, there is no evident change in the particle size of the generated powder as the size of the nozzle tip and the air pressure increases. When the concentration is 40g/1, however, the particle size keeps increasing until the air pressure increases to 0.5kg/$\textrm{cm}^2$, but decreases remarkably as the air pressure exceeds 0.5kg/$\textrm{cm}^2$.

  • PDF

Development of Polymer-derived Silicon Carbide Fiber with Low Oxygen Content Using a Cyclohexene Vapor Process (싸이클로헥센 증기 공정에 의한 산소량이 적은 실리콘카바이드 섬유의 개발)

  • Yoon, Byungil;Choi, Woo Chul;Kim, Myeong Ju;Kim, Jae Sung;Kim, Jung il;Kang, Hong Gu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.620-632
    • /
    • 2017
  • A chemical vapor curing method(CVC) was developed to cure polycarbosilane(PCS) fibers by using cyclohexene vapour as a non-oxygen active reactant, instead of air in oder to prepare the silicon carbide(SiC) fiber with low oxygen content. A cross-linked PCS fibers by cyclohexene vapor showed a completely different variation in IR spectra in comparison to the air-cured PCS fiber. CVC method resulted in less than 3 wt% in oxygen content. In this experiment conditions, The average tensile strength and modulus of SiC fiber obtained by CVC had 1995 MPa and 183 GPa respectively, which is higher than that of SiC fiber prepared by air-curing process.

Influence of pH in 3.5% NaCl aqueous solution on corrosion fatigue-fracture of dual phase steel (3.5% NaCl 수용액의 pH변화가 복합조직강의 부식피로파괴에 미치는 영향)

  • 오세욱;안호민;도영문
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.123-129
    • /
    • 1987
  • Corrosion fatigue fracture of dual phase steel(SS41) and raw material steel(SS41) were investigated in 3.5% NaCl aqueous solution at PH 4,6,9 and 11. The fatigue limit of dual phase steel is increased approximately 1.8 times larger than that of raw material in air. The corrosion fatigue life of dual phase steel is about 5-10 times larger than that of raw material in 3.5% NaCl aqueous solution. The reduction of fatigue life is larger for the acidsalt solution than for the alkali salt solution. The reduction of stress level on the reduction ratio of corrosion fatigue life is large as pH 6-11. The reduction ratio of corrosion fatigue life of dual phase steel and raw material is nearly coincided at pH 2. While at pH4-2 the reduction ratio of corrosion fatigue life only depends on the corrosion effect. It has been found that the corrosion resistance effect of dual phase steel is smaller than that of raw material in corrosion fatigue crack propagation rate. As pH below 6 is changed, it can be clearly observed from raw material that the brittle intergranular fracture is characterized, and from the above result, the influence of corrosion of dual phase steel is small.

  • PDF

Effect of Raw Material Freshness on Quality and Safety of Anchovy Fish Sauce (원료의 선도가 멸치액젓의 품질 및 위생안전성에 미치는 영향)

  • CHO, Young-Je;JUNG, Min-Hong;KIM, Bo-Kyoung;JUNG, Woo-Young;GYE, Hyeon-Jin;JUNG, Hyo-Jung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.4
    • /
    • pp.1194-1201
    • /
    • 2015
  • This study conducted to investigate the impact of raw material freshness on the quality and hygienic safety of anchovy fish sauce and suggest the importance of raw material freshness to make high-quality and hygienic anchovy fish sauce by measuring the chemical compositions and histamine. To devide the raw material's freshness levels, raw anchovy was left for 24 hours and was sampled every 4 hour(Group I-VII). As a result, the levels of VBN(volatile basic nitrogen) and histamine increased as time passed each contents were 16.29-87.65 mg/100 g and 6.14-1499.63 mg/100 g respectively. As fish sauce fermented for 18 months, the contents of VBN were 205.31-270.51 mg/100 g and histamine were 120.54-1707.22 mg/100 g, respectively. These results means the levels of VBN and histamine of raw materials are significantly associated with the hygiene of anchovy fish sauce. To investigate the reason of different contents of histamine at each fish sauce, bacteria from each groups were isolated and identified. At group V-VII those the lowest three groups, Leconostoc mesenteroides ssp. cremoris was identified and that produced the highest content of histamine 22.88-101.69 mg/kg and the others produced histamine 3.79-20.2 mg/kg. This means that fish sauce made by low freshness materials contain bacteria have strong ability to make histamine from histidine. Therefore, the freshness of raw material influences the hygiene and safety of fish sauce, and it is most important to manage the freshness of raw material to make the high quality and hygienically safe fish sauce.

The Utilization of Domestic Fly Ash as a Cement Raw Material (시멘트 원료로 국내산 석탄재의 이용 가능성)

  • Lee, Yoon-Cheol;Lee, Se-Yong;Min, Kyung-So;Lee, Chang-Hyun;Park, Tae-Gyun;Yoo, Dong-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • Fly ash is a by-product of coal fired electrical power plants and used as a material for cement and concrete; particularly, imported fly ash is mainly applied for cement production. Main objectives of this article are to replace domestic fly ash with an imported source. To verify the possibility of domestic fly ash as a material for cement from the aspect of chemical composition and physical properties, we manufactured various kinds of cement, such as using only natural raw material, shale, and partial replacement with domestic and imported fly ash. When we used the domestic and imported fly ash, there were no specific problems in terms of clinker synthesis or cement manufacturing in relation to the natural material, shale. In conclusion, domestic fly ash has been confirmed as an alternative raw material for cement because 7 days and 28 days compressive strength values were better than those of reference cement using natural raw material, on top of the process issue.

Compressive Strength of Geopolymers while Varying the Raw Materials (무기질 원료에 따른 지오폴리머의 압축강도 특성)

  • Joo, Gi-Tae;Lee, Tae-Kun;Park, Mihye;Hwang, Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.575-580
    • /
    • 2012
  • Geopolymers were synthesized using raw materials produced from two different areas: one was from Indonesia and the other was from Habcheon, Korea. The constituting phases of the Indonesian raw material were quartz and kaolinite, while those of the Habcheon sample were quartz, halloysite and albite. They were both calcined at $750^{\circ}C$ for 6 hours, and solution of NaOH and water glass was added to activate the geopolymeric reaction. The compressive strength of geopolymer synthesized from the Indonesian raw material showed a low value of $151\;kgf/cm^2$ after curing for 28 days. However, it could be greatly increased by adding blast furnace slag powders of $1188\;kgf/cm^2$ and $1969\;kgf/cm^2$ at 20 wt% and 40 wt% additions, respectively. The compressive strength of the geopolymer synthesized from the Habcheon raw material was high, at $557\;kgf/cm^2$, after 28 days, and the very high early-stage (3 days) strength of $556\;kgf/cm^2$ for this sample was remarkable. Commercially available Habcheon metastate raw material, of which composition showed low CaO and $Na_2O$ contents compared to the calcined Habcheon raw material, was also examined. It was found that the compressive strength of the commercial metastate type was nearly identical to that of the calcined Habcheon raw material except for the relatively low value at an early curing stage and at a high curing temperature of $60^{\circ}C$.